treeple.stats.build_permutation_forest#

treeple.stats.build_permutation_forest(est, perm_est, X, y, covariate_index=None, metric='s@98', n_repeats=500, verbose=False, seed=None, return_posteriors=True, **metric_kwargs)[source]#

Build a hypothesis testing forest using a permutation-forest approach.

The permutation-forest approach stems from standard permutaiton-testing, where each forest is trained on a new permutation of the dataset. The original test statistic is computed on the original data. Then the pvalue is computed by comparing the original test statistic to the null distribution of the test statistic computed from the permuted forests.

Parameters:
estForest

The type of forest to use. Must be enabled with bootstrap=True.

perm_estForest

The forest to use for the permuted dataset. Should be PermutationHonestForestClassifier.

XArrayLike of shape (n_samples, n_features)

Data.

yArrayLike of shape (n_samples, n_outputs)

Binary target, so n_outputs should be at most 1.

covariate_indexArrayLike, optional of shape (n_covariates,)

The index array of covariates to shuffle, by default None.

metricstr, optional

The metric to compute, by default “s@98”, for sensitivity at 98% specificity.

n_repeatsint, optional

Number of times to bootstrap sample the two forests to construct the null distribution, by default 10000. The construction of the null forests will be parallelized according to the n_jobs argument of the est forest.

verbosebool, optional

Verbosity, by default False.

seedint, optional

Random seed, by default None.

return_posteriorsbool, optional

Whether or not to return the posteriors, by default True.

**metric_kwargsdict, optional

Additional keyword arguments to pass to the metric function.

Returns:
observe_statfloat

The test statistic. To compute the test statistic, take permute_stat_ and subtract observe_stat_.

pvaluefloat

The p-value of the test statistic.

orig_forest_probaArrayLike of shape (n_estimators, n_samples, n_outputs)

The predicted posterior probabilities for each estimator on their out of bag samples.

perm_forest_probaArrayLike of shape (n_estimators, n_samples, n_outputs)

The predicted posterior probabilities for each of the permuted estimators on their out of bag samples.

References