treeple.stats.build_oob_forest#

treeple.stats.build_oob_forest(est, X, y, use_sparse=False, verbose=False, **est_kwargs)[source]#

Build a hypothesis testing forest using oob samples.

Parameters:
estForest

The type of forest to use. Must be enabled with bootstrap=True. The forest should have either oob_samples_ or estimators_samples_ property defined, which will be used to compute the out of bag samples per tree.

XArrayLike of shape (n_samples, n_features)

Data.

yArrayLike of shape (n_samples, n_outputs)

Binary target, so n_outputs should be at most 1.

use_sparsebool, optional

Whether or not to use a sparse representation for the posteriors.

verbosebool, optional

Verbosity, by default False.

**est_kwargsdict, optional

Additional keyword arguments to pass to the forest estimator fit function.

Returns:
estForest

Fitted forest.

all_probaArrayLike of shape (n_estimators, n_samples, n_outputs)

The predicted posterior probabilities for each estimator on their out of bag samples.

Examples using treeple.stats.build_oob_forest#

Calculating S@98

Calculating S@98

Calculating MI

Calculating MI

Calculating pAUC

Calculating pAUC

Calculating Hellinger Distance

Calculating Hellinger Distance

Calculating S@98 with multiview data

Calculating S@98 with multiview data

Calculating CMI

Calculating CMI