treeple
.ObliqueRandomForestRegressor#
- class treeple.ObliqueRandomForestRegressor(n_estimators=100, *, criterion='squared_error', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, max_samples=None, feature_combinations=None)[source]#
An oblique random forest regressor.
A oblique random forest is a meta estimator similar to a random forest that fits a number of oblique decision tree regressor on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
The sub-sample size is controlled with the
max_samples
parameter ifbootstrap=True
(default), otherwise the whole dataset is used to build each tree.Read more in the User Guide.
- Parameters:
- n_estimators
int
, default=100 The number of trees in the forest.
- criterion{“squared_error”, “absolute_error”, “friedman_mse”, “poisson”}, default=”squared_error”
The function to measure the quality of a split. Supported criteria are “squared_error” for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node, “friedman_mse”, which uses mean squared error with Friedman’s improvement score for potential splits, “absolute_error” for the mean absolute error, which minimizes the L1 loss using the median of each terminal node, and “poisson” which uses reduction in Poisson deviance to find splits. Training using “absolute_error” is significantly slower than when using “squared_error”.
- max_depth
int
, default=None The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
- min_samples_split
int
orfloat
, default=2 The minimum number of samples required to split an internal node:
If int, then consider
min_samples_split
as the minimum number.If float, then
min_samples_split
is a fraction andceil(min_samples_split * n_samples)
are the minimum number of samples for each split.
- min_samples_leaf
int
orfloat
, default=1 The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf
training samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression.If int, then consider
min_samples_leaf
as the minimum number.If float, then
min_samples_leaf
is a fraction andceil(min_samples_leaf * n_samples)
are the minimum number of samples for each node.
- min_weight_fraction_leaf
float
, default=0.0 The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided.
- max_features{“sqrt”, “log2”,
None
},int
orfloat
, default=”sqrt” The number of features to consider when looking for the best split:
If int, then consider
max_features
features at each split.If float, then
max_features
is a fraction andround(max_features * n_features)
features are considered at each split.If “auto”, then
max_features=sqrt(n_features)
.If “sqrt”, then
max_features=sqrt(n_features)
.If “log2”, then
max_features=log2(n_features)
.If None, then
max_features=n_features
.
Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than
max_features
features.- max_leaf_nodes
int
, default=None Grow trees with
max_leaf_nodes
in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes.- min_impurity_decrease
float
, default=0.0 A node will be split if this split induces a decrease of the impurity greater than or equal to this value.
The weighted impurity decrease equation is the following:
N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity)
where
N
is the total number of samples,N_t
is the number of samples at the current node,N_t_L
is the number of samples in the left child, andN_t_R
is the number of samples in the right child.N
,N_t
,N_t_R
andN_t_L
all refer to the weighted sum, ifsample_weight
is passed.- bootstrap
bool
, default=True Whether bootstrap samples are used when building trees. If False, the whole dataset is used to build each tree.
- oob_score
bool
, default=False Whether to use out-of-bag samples to estimate the generalization score. Only available if bootstrap=True.
- n_jobs
int
, default=None The number of jobs to run in parallel.
fit()
,predict()
,decision_path()
andapply()
are all parallelized over the trees.None
means 1 unless in ajoblib.parallel_backend
context.-1
means using all processors. See Glossary for more details.- random_state
int
,RandomState
instance orNone
, default=None Controls both the randomness of the bootstrapping of the samples used when building trees (if
bootstrap=True
) and the sampling of the features to consider when looking for the best split at each node (ifmax_features < n_features
). See Glossary for details.- verbose
int
, default=0 Controls the verbosity when fitting and predicting.
- warm_start
bool
, default=False When set to
True
, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the Glossary.- max_samples
int
orfloat
, default=None If bootstrap is True, the number of samples to draw from X to train each base estimator.
If None (default), then draw
X.shape[0]
samples.If int, then draw
max_samples
samples.If float, then draw
max_samples * X.shape[0]
samples. Thus,max_samples
should be in the interval(0.0, 1.0]
.
- feature_combinations
float
, default=None The number of features to combine on average at each split of the decision trees. If
None
, then will default to the minimum of(1.5, n_features)
. This controls the number of non-zeros is the projection matrix. Setting the value to 1.0 is equivalent to a traditional decision-tree.feature_combinations * max_features
gives the number of expected non-zeros in the projection matrix of shape(max_features, n_features)
. Thus this value must always be less thann_features
in order to be valid.
- n_estimators
- Attributes:
- estimators_
list
ofObliqueDecisionTreeRegressor
The collection of fitted sub-estimators.
- n_features_
int
The number of features when
fit
is performed.- n_features_in_
int
Number of features seen during fit.
- feature_names_in_
ndarray
of shape (n_features_in_
,) Names of features seen during fit. Defined only when
X
has feature names that are all strings.- n_outputs_
int
The number of outputs when
fit
is performed.feature_importances_
ndarray
of shape (n_features,)The impurity-based feature importances.
- oob_score_
float
Score of the training dataset obtained using an out-of-bag estimate. This attribute exists only when
oob_score
is True.- oob_decision_function_
ndarray
of shape (n_samples, n_classes) or (n_samples, n_classes, n_outputs) Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case,
oob_decision_function_
might contain NaN. This attribute exists only whenoob_score
is True.
- estimators_
Methods
apply
(X)Apply trees in the forest to X, return leaf indices.
Compute the similarity matrix of samples in X.
Return the decision path in the forest.
fit
(X, y[, sample_weight, classes])Build a forest of trees from the training set (X, y).
For each datapoint x in X, get the training samples in the leaf node.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict regression target for X.
predict_quantiles
(X[, quantiles, method])Predict class or regression value for X at given quantiles.
score
(X, y[, sample_weight])Return the coefficient of determination of the prediction.
set_fit_request
(*[, classes, sample_weight])Request metadata passed to the
fit
method.set_params
(**params)Set the parameters of this estimator.
set_score_request
(*[, sample_weight])Request metadata passed to the
score
method.See also
treeple.tree.ObliqueDecisionTreeRegressor
An oblique decision tree regressor.
sklearn.ensemble.RandomForestRegressor
An axis-aligned decision forest regressor.
Notes
The default values for the parameters controlling the size of the trees (e.g.
max_depth
,min_samples_leaf
, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values.The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data,
max_features=n_features
andbootstrap=False
, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting,random_state
has to be fixed.References
[1]Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.
[2]Tomita, “Sparse Projection Oblique Randomer Forests”, Journal of Machine Learning Research, 21(104), 1-39, 2020.
Examples
>>> from treeple.ensemble import ObliqueRandomForestRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_features=4, n_informative=2, ... random_state=0, shuffle=False) >>> regr = ObliqueRandomForestRegressor(max_depth=2, random_state=0) >>> regr.fit(X, y) ObliqueRandomForestRegressor(...) >>> print(regr.predict([[0, 0, 0, 0]])) [-5.86327109]
- apply(X)#
Apply trees in the forest to X, return leaf indices.
- Parameters:
- X{array_like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
dtype=np.float32
. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix
.
- Returns:
- X_leaves
ndarray
of shape (n_samples, n_estimators) For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in.
- X_leaves
- compute_similarity_matrix(X)#
Compute the similarity matrix of samples in X.
- Parameters:
- Xarray_like of shape (n_samples, n_features)
The input data.
- Returns:
- sim_matrixarray_like of shape (n_samples, n_samples)
The similarity matrix among the samples.
- decision_path(X)#
Return the decision path in the forest.
New in version 0.18.
- Parameters:
- X{array_like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
dtype=np.float32
. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix
.
- Returns:
- indicatorsparse matrix of shape (n_samples, n_nodes)
Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. The matrix is of CSR format.
- n_nodes_ptr
ndarray
of shape (n_estimators + 1,) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.
- fit(X, y, sample_weight=None, classes=None)#
Build a forest of trees from the training set (X, y).
- Parameters:
- X{array_like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Internally, its dtype will be converted to
dtype=np.float32
. If a sparse matrix is provided, it will be converted into a sparsecsc_matrix
.- yarray_like of shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real numbers in regression).
- sample_weightarray_like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node.
- classesarray_like of shape (n_classes,), default=None
List of all the classes that can possibly appear in the y vector.
- Returns:
- self
object
Fitted estimator.
- self
- get_leaf_node_samples(X)#
For each datapoint x in X, get the training samples in the leaf node.
- Parameters:
- Xarray_like of shape (n_samples, n_features)
Dataset to apply the forest to.
- Returns:
- leaf_node_samplesa
list
of array_like Each sample is represented by the indices of the training samples that reached the leaf node. The
n_leaf_node_samples
may vary between samples, since the number of samples that fall in a leaf node is variable. Each array-like has shape (n_leaf_node_samples, n_outputs).
- leaf_node_samplesa
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- predict(X)#
Predict regression target for X.
The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest.
- Parameters:
- X{array_like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, its dtype will be converted to
dtype=np.float32
. If a sparse matrix is provided, it will be converted into a sparsecsr_matrix
.
- Returns:
- y
ndarray
of shape (n_samples,) or (n_samples, n_outputs) The predicted values.
- y
- predict_quantiles(X, quantiles=0.5, method='nearest')#
Predict class or regression value for X at given quantiles.
- Parameters:
- X{array_like, sparse matrix} of shape (n_samples, n_features)
Input data.
- quantiles
float
, optional The quantiles at which to evaluate, by default 0.5 (median).
- method
str
, optional The method to interpolate, by default ‘linear’. Can be any keyword argument accepted by
numpy.quantile()
.
- Returns:
- y
ndarray
of shape (n_samples, n_quantiles, [n_outputs]) The predicted values. The
n_outputs
dimension is present only for multi-output regressors.
- y
- score(X, y, sample_weight=None)#
Return the coefficient of determination of the prediction.
The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()
and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum()
. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy
, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- Xarray_like of shape (n_samples, n_features)
Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted)
, wheren_samples_fitted
is the number of samples used in the fitting for the estimator.- yarray_like of shape (n_samples,) or (n_samples, n_outputs)
True values for
X
.- sample_weightarray_like of shape (n_samples,), default=None
Sample weights.
- Returns:
- score
float
\(R^2\) of
self.predict(X)
w.r.t.y
.
- score
Notes
The \(R^2\) score used when calling
score
on a regressor usesmultioutput='uniform_average'
from version 0.23 to keep consistent with default value ofr2_score()
. This influences thescore
method of all the multioutput regressors (except forMultiOutputRegressor
).
- set_fit_request(*, classes='$UNCHANGED$', sample_weight='$UNCHANGED$')#
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- Returns:
- self
object
The updated object.
- self
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **params
dict
Estimator parameters.
- **params
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight='$UNCHANGED$')#
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- property estimators_samples_#
The subset of drawn samples for each base estimator.
Returns a dynamically generated list of indices identifying the samples used for fitting each member of the ensemble, i.e., the in-bag samples.
Note: the list is re-created at each call to the property in order to reduce the object memory footprint by not storing the sampling data. Thus fetching the property may be slower than expected.
- property feature_importances_#
The impurity-based feature importances.
The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance.
Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values). See
sklearn.inspection.permutation_importance()
as an alternative.- Returns:
- feature_importances_
ndarray
of shape (n_features,) The values of this array sum to 1, unless all trees are single node trees consisting of only the root node, in which case it will be an array of zeros.
- feature_importances_
- property oob_samples_#
The sample indices that are out-of-bag.
Only utilized if
bootstrap=True
, otherwise, all samples are “in-bag”.