Compute partial AUC using multi-view MIGHT (MV-MIGHT)#

An example using FeatureImportanceForestClassifier for nonparametric multivariate hypothesis test, on simulated mutli-view datasets. Here, we present how to estimate partial AUROC from a multi-view feature set.

We simulate a dataset with 510 features, 1000 samples, and a binary class target variable. The first 10 features (X) are strongly correlated with the target, and the second feature set (W) is weakly correlated with the target (y).

We then use MV-MIGHT to calculate the partial AUC of these sets.

import numpy as np
from scipy.special import expit

from sktree import HonestForestClassifier
from sktree.stats import FeatureImportanceForestClassifier
from sktree.tree import DecisionTreeClassifier, MultiViewDecisionTreeClassifier

seed = 12345
rng = np.random.default_rng(seed)

Simulate data#

We simulate the two feature sets, and the target variable. We then combine them into a single dataset to perform hypothesis testing.

n_samples = 1000
n_features_set = 500
mean = 1.0
sigma = 2.0
beta = 5.0

unimportant_mean = 0.0
unimportant_sigma = 4.5

# first sample the informative features, and then the uniformative features
X_important = rng.normal(loc=mean, scale=sigma, size=(n_samples, 10))
X_unimportant = rng.normal(
    loc=unimportant_mean, scale=unimportant_sigma, size=(n_samples, n_features_set)
)
X = np.hstack([X_important, X_unimportant])

# simulate the binary target variable
y = rng.binomial(n=1, p=expit(beta * X_important[:, :10].sum(axis=1)), size=n_samples)

Use partial AUC as test statistic#

You can specify the maximum specificity by modifying max_fpr in statistic.

n_estimators = 125
max_features = "sqrt"
metric = "auc"
test_size = 0.2
n_jobs = -1
honest_fraction = 0.5
max_fpr = 0.1

est_mv = FeatureImportanceForestClassifier(
    estimator=HonestForestClassifier(
        n_estimators=n_estimators,
        max_features=max_features,
        tree_estimator=MultiViewDecisionTreeClassifier(feature_set_ends=[10, 10 + n_features_set]),
        honest_fraction=honest_fraction,
        n_jobs=n_jobs,
    ),
    random_state=seed,
    test_size=test_size,
    permute_forest_fraction=1.0 / n_estimators,
    sample_dataset_per_tree=True,
)

# we test with the multi-view setting, thus should return a higher AUC
stat, posterior_arr, samples = est_mv.statistic(
    X,
    y,
    metric=metric,
    return_posteriors=True,
    max_fpr=max_fpr,
)

print(f"ASH-90 / Partial AUC: {stat}")
print(f"Shape of Observed Samples: {samples.shape}")
print(f"Shape of Tree Posteriors for the positive class: {posterior_arr.shape}")
ASH-90 / Partial AUC: 0.6909445330497962
Shape of Observed Samples: (1000,)
Shape of Tree Posteriors for the positive class: (125, 1000, 1)

Repeat without multi-view#

This feature set has a smaller statistic, which is expected due to its lack of multi-view setting.

est = FeatureImportanceForestClassifier(
    estimator=HonestForestClassifier(
        n_estimators=n_estimators,
        max_features=max_features,
        tree_estimator=DecisionTreeClassifier(),
        honest_fraction=honest_fraction,
        n_jobs=n_jobs,
    ),
    random_state=seed,
    test_size=test_size,
    permute_forest_fraction=1.0 / n_estimators,
    sample_dataset_per_tree=True,
)

stat, posterior_arr, samples = est.statistic(
    X,
    y,
    metric=metric,
    return_posteriors=True,
    max_fpr=max_fpr,
)

print(f"ASH-90 / Partial AUC: {stat}")
print(f"Shape of Observed Samples: {samples.shape}")
print(f"Shape of Tree Posteriors for the positive class: {posterior_arr.shape}")
ASH-90 / Partial AUC: 0.5653274600643021
Shape of Observed Samples: (1000,)
Shape of Tree Posteriors for the positive class: (125, 1000, 1)

All posteriors are saved within the model#

Extract the results from the model variables anytime. You can save the model with pickle.

ASH-90 / Partial AUC: est_mv.observe_stat_

Observed Samples: est_mv.observe_samples_

Tree Posteriors for the positive class: est_mv.observe_posteriors_ (n_trees, n_samples_test, 1)

True Labels: est_mv.y_true_final_

Total running time of the script: (0 minutes 4.089 seconds)

Gallery generated by Sphinx-Gallery