GM+SS using JAgt Seedless Procrustes
Simulated data experiments showing the effectiveness of graph matching with spectral similarity
# collapse
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
import random
import sys
from joblib import Parallel, delayed
from graspy.simulations import sbm_corr
Experiment Summary
Let (G1,G2)∼ρ−SBM(⃗n,B). (NB: binary, symmetric, hollow.)
K=3.
the marginal SBM is conditional on block sizes ⃗n=[n1,n2,n3].
B=[(.20,.01,.01);(.01,.10,.01);(.01,.01,.20)]. (NB: rank(B)=3 with evalues ≈[0.212,0.190,0.098].)
with n=75 and ⃗n=[n1,n2,n3]=[25,25,25]
for each ρ∈{0.5,0.6,⋯,0.9,1.0} generate r replicates (G1,G2).
For all r replicates, run GM, GMSS & GMJ.Agt each t times, with each t corresponding to a different random permutation on G2.
Specifically,G′2=QG2QT, where Q is sampled uniformly from the set of nxn permutations matrices.
For each t permutation, run GM & GMSS & GMJ.Agt from the barycenter (γ=0).
For each r, the t permutation with the highest associated objective function value will have it's match ratio recorded
For any ρ value, have δ denote the average match ratio over the r realizations
Plot x=ρ vs y= δ ± 2s.e.
This notebook contains figures for r=50, t=10
NOTE: The max number of FW iterations here is set at 20.
Description of GMJ.Agt Procedure
For each r, ASE each graph into d=3 yielding ˆX1 & ˆX2
With 2d initializations, where d is dimension, use J.Agt's seedless procrustes to find the optimal orthogonal alignment matrix, Q.
let Phat=ˆX1QˆXT2 and run t repititions of gm with G1,G2andPhat as the similarity.
# collapse
# load in J.Agt data
# ratios_j = np.genfromtxt('ratios.csv', delimiter = ',')
# ratios_ss_j = np.genfromtxt('ratios_ss.csv', delimiter=',')
# scores_j = np.genfromtxt('scores.csv', delimiter = ',')
# scores_ss_j = np.genfromtxt('scores_ss.csv', delimiter=',')
# rhos = np.arange(5,10.5,0.5) *0.1
# n_p = len(rhos)
# ratios_opt_j = np.genfromtxt('ratios_opt.csv', delimiter = ',')
# ratios_opt_ss_j = np.genfromtxt('ratios_opt_ss.csv', delimiter=',')
# scores_opt_j = np.genfromtxt('scores_opt.csv', delimiter = ',')
# scores_opt_ss_j = np.genfromtxt('scores_opt_ss.csv', delimiter=',')
# collapse
ratios = np.genfromtxt('ratios.csv', delimiter = ',')
ratios_ss = np.genfromtxt('ratios_ss.csv', delimiter=',')
scores = np.genfromtxt('scores.csv', delimiter = ',')
scores_ss = np.genfromtxt('scores_ss.csv', delimiter=',')
ratios_opt = np.genfromtxt('ratios_opt.csv', delimiter = ',')
ratios_opt_ss = np.genfromtxt('ratios_opt_ss.csv', delimiter=',')
scores_opt = np.genfromtxt('scores_opt.csv', delimiter = ',')
scores_opt_ss = np.genfromtxt('scores_opt_ss.csv', delimiter=',')
# collapse
from scipy.stats import sem
import seaborn as sns
error = np.asarray([sem(ratios_j[i,:]) for i in range(n_p)])
average = np.asarray([np.mean(ratios_j[i,:] ) for i in range(n_p)])
error_j = np.asarray([sem(ratios_ss_j[i,:]) for i in range(n_p)])
average_j = np.asarray([np.mean(ratios_ss_j[i,:] ) for i in range(n_p)])
# collapse
error_ss = np.asarray([sem(ratios_ss[i,:]) for i in range(n_p)])
average_ss = np.asarray([np.mean(ratios_ss[i,:] ) for i in range(n_p)])
error2 = np.asarray([sem(ratios[i,:]) for i in range(n_p)])
average2 = np.asarray([np.mean(ratios[i,:] ) for i in range(n_p)])
# collapse
sns.set_context('paper')
sns.set(rc={'figure.figsize':(12,8)})
# plt.errorbar(rhos[odds],average_ss[odds], error_ss[odds],marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM+SS', color='blue')
# plt.errorbar(rhos[odds],average[odds], error[odds],marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM', color='red')
plt.errorbar(rhos,average_j, error_j,marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM+J.Agt', color='green')
plt.errorbar(rhos,average, error,marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM', color='red')
plt.errorbar(rhos,average_ss, error_ss,marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM+SS', color='blue')
plt.xlabel("rho")
plt.ylabel("avergae match ratio")
plt.text(0.5,0.5, 'r=50, t=10')
plt.legend()
# collapse
import numpy as np
import matplotlib.pyplot as plt
import random
import sys
from joblib import Parallel, delayed
from .qap_sim import quadratic_assignment_sim
import seaborn as sns
from graspy.match import GraphMatch as GMP
from graspy.simulations import sbm_corr
from .jagt import SeedlessProcrustes
from graspy.embed import AdjacencySpectralEmbed
def run_sim(r, t, n=150, flip='median'):
def match_ratio(inds, n):
return np.count_nonzero(inds == np.arange(n)) / n
def _median_sign_flips(X1, X2):
X1_medians = np.median(X1, axis=0)
X2_medians = np.median(X2, axis=0)
val1 = np.sign(X1_medians).astype(int)
X1 = np.multiply(val1.reshape(-1, 1).T, X1)
val2 = np.sign(X2_medians).astype(int)
X2 = np.multiply(val2.reshape(-1, 1).T, X2)
return X1, X2
#rhos = 0.1 * np.arange(11)[5:]
m = r
rhos = np.arange(5,10.5,0.5) *0.1
n_p = len(rhos)
ratios = np.zeros((n_p,m))
scores = np.zeros((n_p,m))
ratios_ss = np.zeros((n_p,m))
scores_ss = np.zeros((n_p,m))
ratios_opt = np.zeros((n_p,m))
scores_opt = np.zeros((n_p,m))
ratios_opt_ss = np.zeros((n_p,m))
scores_opt_ss = np.zeros((n_p,m))
n_per_block = int(n/3)
n_blocks = 3
block_members = np.array(n_blocks * [n_per_block])
block_probs = np.array([[0.2, 0.01, 0.01], [0.01, 0.1, 0.01], [0.01, 0.01, 0.2]])
directed = False
loops = False
for k, rho in enumerate(rhos):
np.random.seed(8888)
seeds = [np.random.randint(1e8, size=t) for i in range(m)]
def run_sim(seed):
A1, A2 = sbm_corr(
block_members, block_probs, rho, directed=directed, loops=loops
)
score = 0
res_opt = None
score_ss = 0
res_opt_ss = None
ase = AdjacencySpectralEmbed(n_components=3, algorithm='truncated')
Xhat1 = ase.fit_transform(A1)
Xhat2 = ase.fit_transform(A2)
if flip=='median':
xhh1, xhh2 = _median_sign_flips(Xhat1, Xhat2)
S = xhh1 @ xhh2.T
elif flip=='jagt':
sp = SeedlessProcrustes().fit(Xhat1, Xhat2)
xhh1 = Xhat1@sp.Q
xhh2 = Xhat2
S = xhh1 @ xhh2.T
else:
S = None
for j in range(t):
res = quadratic_assignment_sim(A1, A2, True, options={'seed':seed[j]})
if res['score']>score:
res_opt = res
score = res['score']
res = quadratic_assignment_sim(A1, A2, True, S, options={'seed':seed[j]})
if res['score']>score_ss:
res_opt_ss = res
score_ss = res['score']
ratio = match_ratio(res_opt['col_ind'], n)
score = res_opt['score']
ratio_ss = match_ratio(res_opt_ss['col_ind'], n)
score_ss = res_opt_ss['score']
res = quadratic_assignment_sim(A1, A2, True, options={'shuffle_input':False})
ratio_opt = match_ratio(res['col_ind'], n)
score_opt = res['score']
res = quadratic_assignment_sim(A1, A2, True, S, options={'shuffle_input':False})
ratio_opt_ss = match_ratio(res['col_ind'], n)
score_opt_ss = res['score']
return ratio, score, ratio_ss, score_ss, ratio_opt, score_opt, ratio_opt_ss, score_opt_ss
result = Parallel(n_jobs=-1, verbose=10)(delayed(run_sim)(seed) for seed in seeds)
ratios[k,:] = [item[0] for item in result]
scores[k,:] = [item[1] for item in result]
ratios_ss[k,:] = [item[2] for item in result]
scores_ss[k,:] = [item[3] for item in result]
ratios_opt[k,:] = [item[4] for item in result]
scores_opt[k,:] = [item[5] for item in result]
ratios_opt_ss[k,:] = [item[6] for item in result]
scores_opt_ss[k,:] = [item[7] for item in result]
np.savetxt('ratios.csv',ratios, delimiter=',')
np.savetxt('scores.csv',scores, delimiter=',')
np.savetxt('ratios_ss.csv',ratios_ss, delimiter=',')
np.savetxt('scores_ss.csv',scores_ss, delimiter=',')
np.savetxt('ratios_opt.csv',ratios_opt, delimiter=',')
np.savetxt('scores_opt.csv',scores_opt, delimiter=',')
np.savetxt('ratios_opt_ss.csv',ratios_opt_ss, delimiter=',')
np.savetxt('scores_opt_ss.csv',scores_opt_ss, delimiter=',')
from scipy.stats import sem
error = [2*sem(ratios[i,:]) for i in range(n_p)]
average = [np.mean(ratios[i,:] ) for i in range(n_p)]
error_ss = [2*sem(ratios_ss[i,:]) for i in range(n_p)]
average_ss = [np.mean(ratios_ss[i,:] ) for i in range(n_p)]
sns.set_context('paper')
#sns.set(rc={'figure.figsize':(15,10)})
txt =f'r={r}, t={t}'
plt.errorbar(rhos,average_ss, error_ss,marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM+SS')
plt.errorbar(rhos,average, error,marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM', color='red')
plt.xlabel("rho")
plt.ylabel("avergae match ratio")
plt.text(0.5,0.5,txt)
plt.legend()
plt.savefig('figure_matchratio.png', dpi=150, facecolor="w", bbox_inches="tight", pad_inches=0.3)