Graph matching with spectral similarity
Simulated data experiments showing the effectiveness of graph matching with spectral similarity
#collapse
from graspy.match import GraphMatch as GMP
from graspy.simulations import sbm_corr
from graspy.embed import AdjacencySpectralEmbed
#collapse
import numpy as np
import matplotlib.pyplot as plt
import random
import sys
from joblib import Parallel, delayed
import seaborn as sns
#collapse
from qap_sim import quadratic_assignment_sim
Experiment Summary
Let $(G_1, G_2) \sim \rho-SBM(\vec{n},B)$. (NB: binary, symmetric, hollow.)
$K = 3$.
the marginal SBM is conditional on block sizes $\vec{n}=[n_1,n_2,n_3]$.
$B = [(.20,.01,.01);(.01,.10,.01);(.01,.01,.20)]$. (NB: rank($B$)=3 with evalues $\approx [0.212,0.190,0.098]$.)
with $n = 150$ and $\vec{n}=[n_1,n_2,n_3] = [50,50,50]$
for each $\rho \in \{0,0.1,\cdots,0.9,1.0\}$ generate $r$ replicates $(G_1, G_2)$.
For all $r$ replicates, run $GM$ and $GM_{SS}$ each $t$ times, with each $t$ corresponding to a different random permutation on $G_2$.
Specifically,$G_2' = Q G_2 Q^T,$ where $Q$ is sampled uniformly from the set of $n x n$ permutations matrices.
For each $t$ permutation, run $GM$ & $GM_{SS}$ from the barycenter.
For each $r$, the $t$ permutation with the highest associated objective function value will have it's match ratio recorded
For any $\rho$ value, have $\delta$ denote the average match ratio over the $r$ realizations
Plot $x=\rho$ vs $y$= $\delta$ $\pm$ 2s.e.
This notebook contains figures for $r=50$, $t=20$
#collapse
def match_ratio(inds, n):
return np.count_nonzero(inds == np.arange(n)) / n
n = 150
m = 1
t = 10
rhos = 0.1 * np.arange(11)
ratios2 = np.zeros((11,m))
scores2 = np.zeros((11,m))
n_per_block = int(n/3)
n_blocks = 3
block_members = np.array(n_blocks * [n_per_block])
block_probs = np.array([[0.2, 0.01, 0.01], [0.01, 0.1, 0.01], [0.01, 0.01, 0.2]])
directed = False
loops = False
#collapse
n = 150
m = 50
t = 20
rhos = 0.1 * np.arange(11)
ratios = np.zeros((11,m))
scores = np.zeros((11,m))
ratios_ss = np.zeros((11,m))
scores_ss = np.zeros((11,m))
n_per_block = int(n/3)
n_blocks = 3
block_members = np.array(n_blocks * [n_per_block])
block_probs = np.array([[0.2, 0.01, 0.01], [0.01, 0.1, 0.01], [0.01, 0.01, 0.2]])
directed = False
loops = False
#np.random.seed(8888)
for k, rho in enumerate(rhos):
for i in range(m):
A1, A2 = sbm_corr(
block_members, block_probs, rho, directed=directed, loops=loops
)
score = 0
res_opt = None
score_ss = 0
res_opt_ss = None
for j in range(t):
seed = k+m+t
res = quadratic_assignment_sim(A1,A2, sim=False, maximize=True, options={'seed':seed})
if res['score']>score:
res_opt = res
score = res['score']
res = quadratic_assignment_sim(A1,A2, sim=True, maximize=True, options={'seed':seed})
if res['score']>score_ss:
res_opt_ss = res
score_ss = res['score']
ratios[k,i] = match_ratio(res_opt['col_ind'], n)
scores[k,i] = res_opt['score']
ratios_ss[k,i] = match_ratio(res_opt_ss['col_ind'], n)
scores_ss[k,i] = res_opt_ss['score']
#ratios[k] = ratios[k]/m
#collapse
from scipy.stats import sem
error = [2*sem(ratios[i,:]) for i in range(11)]
average = [np.mean(ratios[i,:] ) for i in range(11)]
error_ss = [2*sem(ratios_ss[i,:]) for i in range(11)]
average_ss = [np.mean(ratios_ss[i,:] ) for i in range(11)]
#collapse
sns.set_context('talk')
#sns.set(rc={'figure.figsize':(15,10)})
plt.errorbar(rhos,average_ss, error_ss,marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM+SS')
plt.errorbar(rhos,average, error,marker='o',capsize=3, elinewidth=1, markeredgewidth=1, label='GM', color='red')
plt.xlabel("rho")
plt.ylabel("avergae match ratio")
plt.legend()
plt.savefig('GM_GM+SS.png',fmt="png", dpi=150, facecolor="w", bbox_inches="tight", pad_inches=0.3)
#collapse
diff = ratios_ss[9,:] - ratios[9,:]
plt.hist(diff, bins=20)
plt.ylabel('Density')
plt.xlabel('Match Ratio Difference (GM+SS - GM)')
plt.title('Paired Difference Histogram (Rho = 0.9)')
#collapse
left_adj = np.genfromtxt('left_adj.csv', delimiter=',')
right_adj = np.genfromtxt('right_adj.csv', delimiter=',')
#collapse
def median_sign_flips(X1, X2):
X1_medians = np.median(X1, axis=0)
X2_medians = np.median(X2, axis=0)
val = np.multiply(X1_medians, X2_medians)
t = (val > 0) * 2 - 1
X1 = np.multiply(t.reshape(-1, 1).T, X1)
return X1, X2