Source code for sktree.ensemble._eiforest

from sklearn.ensemble._iforest import IsolationForest

from sktree.tree import ExtraObliqueDecisionTreeRegressor


[docs]class ExtendedIsolationForest(IsolationForest): """ Extended Isolation Forest Algorithm. Return the anomaly score of each sample using the ExtendedIsolationForest algorithm The ExtendedIsolationForest 'isolates' observations by randomly selecting a sparse linear combination of features and then randomly selecting a split value between the maximum and minimum values of the selected feature. The main difference from the IsolationForest algorithm is how the splits are computed. Read more in the :ref:`User Guide <isolation_forest>`. Parameters ---------- n_estimators : int, default=100 The number of base estimators in the ensemble. max_samples : "auto", int or float, default="auto" The number of samples to draw from X to train each base estimator. - If int, then draw `max_samples` samples. - If float, then draw `max_samples * X.shape[0]` samples. - If "auto", then `max_samples=min(256, n_samples)`. If max_samples is larger than the number of samples provided, all samples will be used for all trees (no sampling). contamination : 'auto' or float, default='auto' The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the scores of the samples. - If 'auto', the threshold is determined as in the original paper. - If float, the contamination should be in the range (0, 0.5]. max_features : int or float, default=1.0 The number of features to draw from X to train each base estimator. - If int, then draw `max_features` features. - If float, then draw `max(1, int(max_features * n_features_in_))` features. Note: using a float number less than 1.0 or integer less than number of features will enable feature subsampling and leads to a longer runtime. bootstrap : bool, default=False If True, individual trees are fit on random subsets of the training data sampled with replacement. If False, sampling without replacement is performed. feature_combinations : int, default=2 The number of features to on average combine to consider at each split. For more information, see `ExtraObliqueDecisionTreeRegressor`. n_jobs : int, default=None The number of jobs to run in parallel for both :meth:`fit` and :meth:`predict`. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. random_state : int, RandomState instance or None, default=None Controls the pseudo-randomness of the selection of the feature and split values for each branching step and each tree in the forest. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`. verbose : int, default=0 Controls the verbosity of the tree building process. warm_start : bool, default=False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`the Glossary <warm_start>`. .. versionadded:: 0.21 Attributes ---------- estimator_ : :class:`~sklearn.tree.ExtraTreeRegressor` instance The child estimator template used to create the collection of fitted sub-estimators. .. versionadded:: 1.2 `base_estimator_` was renamed to `estimator_`. base_estimator_ : ExtraTreeRegressor instance The child estimator template used to create the collection of fitted sub-estimators. .. deprecated:: 1.2 `base_estimator_` is deprecated and will be removed in 1.4. Use `estimator_` instead. estimators_ : list of ExtraTreeRegressor instances The collection of fitted sub-estimators. estimators_features_ : list of ndarray The subset of drawn features for each base estimator. estimators_samples_ : list of ndarray The subset of drawn samples (i.e., the in-bag samples) for each base estimator. max_samples_ : int The actual number of samples. offset_ : float Offset used to define the decision function from the raw scores. We have the relation: ``decision_function = score_samples - offset_``. ``offset_`` is defined as follows. When the contamination parameter is set to "auto", the offset is equal to -0.5 as the scores of inliers are close to 0 and the scores of outliers are close to -1. When a contamination parameter different than "auto" is provided, the offset is defined in such a way we obtain the expected number of outliers (samples with decision function < 0) in training. .. versionadded:: 0.20 n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- sklearn.covariance.EllipticEnvelope : An object for detecting outliers in a Gaussian distributed dataset. sklearn.svm.OneClassSVM : Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. sklearn.neighbors.LocalOutlierFactor : Unsupervised Outlier Detection using Local Outlier Factor (LOF). Notes ----- The implementation is based on an ensemble of ExtraTreeRegressor. The maximum depth of each tree is set to ``ceil(log_2(n))`` where :math:`n` is the number of samples used to build the tree (see (Liu et al., 2008) for more details). References ---------- .. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest." Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. .. [2] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation-based anomaly detection." ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3. Examples -------- >>> from sktree.ensemble import ExtendedIsolationForest >>> X = [[-1.1], [0.3], [0.5], [100]] >>> clf = ExtendedIsolationForest(random_state=0).fit(X) >>> clf.predict([[0.1], [0], [90]]) array([ 1, 1, -1]) """ def __init__( self, *, n_estimators=100, max_samples="auto", contamination="auto", max_features=1.0, bootstrap=False, feature_combinations=None, n_jobs=None, random_state=None, verbose=0, warm_start=False, ): super(IsolationForest, self).__init__( estimator=ExtraObliqueDecisionTreeRegressor( feature_combinations=feature_combinations, max_features=1, splitter="random", random_state=random_state, ), # here above max_features has no links with self.max_features bootstrap=bootstrap, bootstrap_features=False, n_estimators=n_estimators, max_samples=max_samples, max_features=max_features, warm_start=warm_start, n_jobs=n_jobs, random_state=random_state, verbose=verbose, ) self.feature_combinations = feature_combinations self.contamination = contamination