Tools for comparative connectomics: case studies from two sides of a larval *Drosophila* brain

Benjamin D. Pedigo

(he/him) NeuroData lab Johns Hopkins University - Biomedical Engineering

bpedigo@jhu.edu
@bdpedigo (Github)
@bpedigod (Twitter)
bdpedigo.github.io

These slides at:

tinyurl.com/princeton-bilarva

Many goals of connectomics involve linking connectome to other properties

Comparative connectomics as a potential solution?

- Map connectomes from related individuals/organisms which may differ in feature X:
 - Genome
 - Behavioral patterns/habits
 - Life experience
 - Developmental stage
- Compare connectomes
- Understand how X {affects, is affected by, is associated with} connectome structure

$\textbf{Connectome} \leftrightarrow \textbf{memory}$

Commentary The Mind of a Mouse

Larry F. Abbott,¹ Davi D. Bock,² Edward M. Callaway,³ Winfried Denk,^{4,25} Catherine Dulac,⁵ Adrienne L. Fairhall,⁶ Ila Fiete,⁷ Kristen M. Harris,⁸ Moritz Helmstaedter,⁹ Viren Jain,^{10,25,*} Narayanan Kasthuri,¹¹ Yann LeCun,¹² Jeff W. Lichtman,^{13,25,*} Peter B. Littlewood,¹⁴ Liqun Luo,¹⁵ John H.R. Maunsell,¹⁶ R. Clay Reid,^{17,25} Bruce R. Rosen,¹⁸ Gerald M. Rubin,¹⁹ Terrence J. Sejnowski,^{3,20} H. Sebastian Seung,^{21,25} Karel Svoboda,¹⁹ David W. Tank,^{22,25} Doris Tsao,²³ and David C. Van Essen²⁴

...the acquisition of wiring diagrams across multiple individuals will yield insights into how experiences shape neural connections.

$\textbf{Connectome} \leftrightarrow \textbf{disease}$

Commentary The Mind of a Mouse

Larry F. Abbott,¹ Davi D. Bock,² Edward M. Callaway,³ Winfried Denk,^{4,25} Catherine Dulac,⁵ Adrienne L. Fairhall,⁶ Ila Fiete,⁷ Kristen M. Harris,⁸ Moritz Helmstaedter,⁹ Viren Jain,^{10,25,*} Narayanan Kasthuri,¹¹ Yann LeCun,¹² Jeff W. Lichtman,^{13,25,*} Peter B. Littlewood,¹⁴ Liqun Luo,¹⁵ John H.R. Maunsell,¹⁶ R. Clay Reid,^{17,25} Bruce R. Rosen,¹⁸ Gerald M. Rubin,¹⁹ Terrence J. Sejnowski,^{3,20} H. Sebastian Seung,^{21,25} Karel Svoboda,¹⁹ David W. Tank,^{22,25} Doris Tsao,²³ and David C. Van Essen²⁴

The first step would be to learn what the normal wiring diagram is [...] it should be feasible to do many additional connectomes [...] of animal models of brain disorders

$\textbf{Connectome} \leftrightarrow \textbf{development}$

Why is comparative connectomics hard?

Collecting the data is still a large effort...

But how do we even compare connectomes once we have them?

- Data are networks
 - Data are networks with rich attributes
- Data will always have noise
 - "Experimental noise"
 - "Biological noise"
- Data are big (and getting bigger)

Outline

- Larval connectome dataset
- Connectome comparison via network hypothesis testing
- Pairing neurons across connectomes via graph matching
- Ongoing extensions/applications

Larval Drosophila brain connectome

~3k neurons, ~550K synapses Both hemispheres

Winding, Pedigo et al. Submitted (2022)

Bilateral symmetry

"This brain is bilaterally symmetric."

-Neuroscientists

"What does that even mean? And how would we know if it wasn't?" -Us

Are the left and right sides of this connectome different?

Outline

- Larval connectome dataset
- Connectome comparison via network hypothesis testing
- Pairing neurons across connectomes via graph matching
- Ongoing extensions/applications

Are these populations different?

- Known as two-sample testing
- $Y^{(1)} \sim F^{(1)}$, $Y^{(2)} \sim F^{(2)}$
- $H_0: F^{(1)} = F^{(2)}$ $H_A: F^{(1)} \neq F^{(2)}$

Are these networks different?

- Want a two-network-sample test!
- $A^{(L)} \sim F^{(L)}$, $A^{(R)} \sim F^{(R)}$
- $H_0: F^{(L)} = F^{(R)}$ $H_A: F^{(L)} \neq F^{(R)}$

Assumptions

- Know the direction of synapses, so network is *directed*
- For simplicity (for now), consider networks to be *unweighted*
- For simplicity (for now), consider the left \rightarrow left and right \rightarrow right (*ipsilateral*) connections
- Not going to assume any nodes are matched

Erdos-Renyi model

- All edges are independent
- All edges generated with the same probability, p

Detect a difference in density

Stochastic block model

Edge probabilities are a function of a neuron's group

Increasing $1 \rightarrow 2$ connection probability

Connection probabilities between groups

Brain Inputs (477)

Interneurons (2118)

Group connection test

Group neurons

Combine p-values for overall test

Detect differences in group connection probabilities

- 5 group-to-group connections are significantly different (after multiple comparisons correction)
- Overall test (comparing all blocks): p-value $< 10^{-7}$

Should we be surprised?

- Already saw that even the overall densities were different
- For all significant comparisons, probabilities on the right hemisphere were higher
- Maybe the right is just a "scaled up" version of the left?
 - $\circ H_0: B^{(L)} = cB^{(R)}$

where c is a density-adjusting constant, $\frac{p^{(L)}}{p^{(R)}}$

After adjusting for density, differences are in KCs

Overall p-value: $< 10^{-2}$

When we remove KCs...

Group connection $H_0: B^{(L)} = B^{(R)}$ $H_A: B^{(L)} \neq B^{(R)}$

Density-adjusted group connection $H_0: B^{(L)} = cB^{(R)}$ $H_A: B^{(L)} \neq cB^{(R)}$

- Density test: $p < 10^{-26}$
- Group connection test: $p < 10^{-2}$
- Density-adjusted group connection test: $p \approx 0.51$

To sum up...

"This brain is bilaterally symmetric." -Neuroscientists

Depends on what you mean...

With Kenyon cells

Model	H_0 (vs. $H_A eq$)	p-value
ER	$p^{(L)} = p^{(R)}$	$< 10^{-23}$
SBM	$B^{(L)} = B^{(R)}$	$< \! 10^{-7}$
daSBM	$B^{(L)} = cB^{(R)}$	$< \! 10^{-2}$

Without Kenyon cells

Model	H_0 (vs. $H_A eq$)	p-value
ER	$p^{(L)} = p^{(R)}$	$< \! 10^{-26}$
SBM	$B^{(L)} = B^{(R)}$	$<\! 10^{-2}$
daSBM	$B^{(L)} = cB^{(R)}$	pprox 0.51

Examining the effect of edge weights

Increasing edge weight threshold Left Rerun all tests Right

Highest edge weight networks show no asymmetry

Outline

- Larval connectome dataset
- Connectome comparison via network hypothesis testing
- Pairing neurons across connectomes via graph matching
- Ongoing extensions/applications

Bilaterally homologous neuron pairs

We believe a matching exists!

Can we use network structure to predict this pairing?

- Week 1: observe a network (A) of phone #s and the calls they make to each other
- Week 2: all of the #s change! But a (noisy) version of that network still exists, with different labels... (*B*)
- How to map nodes of network A to those of network B?

What is graph matching?

How do we measure network overlap?

where \mathcal{P} is the set of permutation matrices

- Measures the number of edge disagreements for unweighted networks,
- Norm of edge disagreements for weighted networks

How do we do graph matching?

- Relax the problem to a continuos space
 - Convex hull of permutation matrices
- Minimize a linear approximation of objective function (repeat)
- Project back to the closest permutation matrix

Matching (by connectivity only) performs fairly well

With "vanilla" graph matching: ~80% correct (according to expert annotator)

Many ways to try to improve on this...

- Edge types allow for "multilayer" graph matching
- Partial knowledge of the matching (seeds)
- Morphology (e.g. NBLAST)

Summary of "edge types" based on neuron compartments

Thus far, we've not used the contralateral connections

These are about 1/3 of the edges in the brain!

From graph matching to bisected graph matching

Contralateral connections are helpful!

Performance improvement on the full brain

Outline

- Larval connectome dataset
- Connectome comparison via network hypothesis testing
- Pairing neurons across connectomes via graph matching
- Ongoing extensions/applications

Pairs facilitate more powerful tests

- Generate an Erdos-Renyi network (*A*)
- Perturb a copy of it (*B*) (add edges)
- Test for differences between A and B

Testing for "stereotypy" in edge structure

Is matching stronger than expected under some model of independent networks?

Neurons clustered by connectivity using recursive spectral clustering

Where to stop splitting?

Using *pairs* and *models* to evaluate cell type groupings

- Clustering nodes corresponds with inferring groups in a stochastic block model (DCSBM)...
- How well do these models generalize to the other side of the brain (let alone the next maggot)?

 \approx

- Model-based network comparison enables testing (and refining) hypotheses about connectomes
 - We proposed a few tests, but just the beginning!
- Graph matching can pair neurons across datasets
 - Helpful to adapt off-the-shelf algos. to use biological info (e.g contralaterals, edge types)

Aim to apply these (and other) tools to make inferences from connectome comparisons!

How to use these (and other) tools?

graspologic

github.com/microsoft/graspologic

downloads 139k 📿 Stars 260 contributors 49

Model-based testing

github.com/neurodata/bilateral-connectome

Improved matching

github.com/neurodata/bgm

JB jupyter book

(Or for WIP final implementation see github.com/microsoft/graspologic/pull/960)

Chung, Pedigo et al. JMLR (2019)

Acknowledgements

Team

Michael Mike Eric Ali Marta Albert Carey Joshua Winding Powell Bridgeford Saad-Eldin Zlatic Cardona Priebe Vogelstein

Tracers who contributed to larva connectome, Heather Patsolic, Youngser Park, NeuroData lab, Microsoft Research Figures from Scidraw + Noun Project (Alexander Bates, Xuan Ma, Gil Costa, Vivek Kumar, Leslie Coonrod)

Funding

NSF Graduate Research Fellowship (B.D.P.), NSF CAREER Award (J.T.V.), NSF NeuroNex Award (J.T.V and C.E.P.), NIH BRAIN Initiative (J.T.V.)

Questions?

Slides:

tinyurl.com/princeton-bilarva

Benjamin D. Pedigo
bpedigo@jhu.edu
@bdpedigo (Github)
@bpedigod (Twitter)
bdpedigo.github.io

Left

Right