Model-based comparison of connectomes: applications in a whole insect brain

Benjamin D. Pedigo

(he/him) - 🖂 bpedigo@jhu.edu NeuroData lab Johns Hopkins University - Biomedical Engineering

Acknowledgements

Mike Powell

Eric Bridgeford

Michael

Winding

Marta Zlatic

Albert Cardona

Joshua Vogelstein

Larval Drosophila brain connectome

Are the left and right sides of this connectome different?

We reject even the simplest notion of symmetry

 $egin{aligned} H_0: p^{(L)} &= p^{(R)} \ H_A: p^{(L)}
eq p^{(R)} \end{aligned}$

p-value:
$${<}10^{-23}$$

Localizing differences to cell type connections

• Fit block models to both hemispheres

• Compare connection probabilities: $H_0: B^{(L)} = B^{(R)}$ $H_A: B^{(L)} \neq B^{(R)}$

Modified definitions of symmetry which ARE exhibited

Rescale connection probabilities AND remove Kenyon cells

p-value: ~0.51

Threshold by edge weight (input proportion to postsynaptic neuron)

Conclusions

- Testing hypotheses in connectomics requires techniques for networks
 - We presented procedures for comparing connectomes
- Used to evaluate bilateral symmetry, finding how this brain is/is not bilaterally symmetric
- Poised to apply these tools to answer...
 - {Your question here}
 - Get in touch:
 - bpedigo@jhu.edu
 - jovo@jhu.edu

More info

- Graspologic downloads 121k
- This work: J jupyter book
 github.com/neurodata/bilateral connectome
- Chung et al. *Statistical* connectomics (2021)
- Data: Winding, Pedigo et al. *In* preparation (2022)