Tools for comparing connectomes: evaluating the bilateral symmetry of a whole insect brain

Benjamin D. Pedigo

(he/him) - 🖾 bpedigo@jhu.edu NeuroData lab Johns Hopkins University - Biomedical Engineering

Mike

Powell

Team

Michael Winding

Eric

Bridgeford

Marta Zlatic

Joshua Vogelstein

Comparative connectomics

- Connectomes \leftrightarrow {disease, evolution, development, experience, ...}
- As related connectomes are mapped, we'll want evaluate the *significance* and *nature* of differences between them

Examples for today's talk

1. Are the left and right sides of a larva brain connectome *different*?

2. How can we *automatically* estimate neuron pairing between brain hemispheres?

Testing for differences

Are these two populations different?

Are these two *networks* different?

Many ways to write what "symmetry" means! (different F, different statistics)

Example: testing for differences in cell type connections

• Fit block models to both hemispheres

• Compare connection probabilities: $H_0: B^{(L)} = B^{(R)}$ $H_A: B^{(L)} \neq B^{(R)}$

Examining the effect of edge weights

Estimating neuron pairing using graph matching

Graph matching (GM)

$$\min_{P} || \mathbf{A}_{LL} - \mathbf{P} \mathbf{A}_{RR} \mathbf{P}^{T} ||_{F}^{2}$$

Morphologies of pairs predicted from connectivity.

~80-85% agreement with an expert annotator.

Improving graph matching to suit connectomes

Incorporating contralateral connections improves matching accuracy

Improving accuracy and scalability

Graph Matching via Optimal Transport

Ali Saad-Eldin^{*1}, Benjamin D. Pedigo^{†1}, Carey E. Priebe², and Joshua T. Vogelstein^{‡1,3}

Runs in ~1hr for 10k node networks

Conclusions

- Demonstrated novel tools for comparing connectomes, case study on symmetry in a *Drosophila* larva
 - Model-based network comparison
 - Improved methods for matching neurons via connectivity
- Can be applied more generally to compare connectomes!
- Ongoing work: combining testing and matching frameworks to evaluate stereotypy at the edge-level
- Have other network analysis questions? Let's chat!

Slides, code, papers, contact

bpedigo@jhu.edu
@bpedigod
bdpedigo.github.io