1 Results

1.1 1-d Heatmap

1.2 Location meda_plots

1.3 Outliers as given by randomForest

1.4 Correlation Matrix

1.5 Cumulative Variance with Elbows

1.6 Paired Hex-binned plot

1.7 Hierarchical GMM Classifications

1.8 Hierarchical GMM Dendrogram

1.9 Stacked Means

1.10 Cluster Means

2 Restricting hGMM to \(K = 2\)

Here we are restricting hierarchical GMM to only go through on level. We are comparing the cluster results to the gaba labels.

set.seed(314)
h2 <- hmc(sdat, maxDepth = 2, ccol = ccol, maxDim = 12)
h2lab <- viridis(max(h2$dat$labels$col))

2.1 K = 2 stacked means plot

stackM(h2, ccol = ccol, centered = TRUE, depth = 1)

2.2 Pairs plot colored by hGMM cluster classification

acols2 <- alpha(h2lab[h2$dat$labels$col], 0.5)
pairs(h2$dat$data, pch = 19, cex = 0.4, col = acols2)