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Abstract

The expansion of publicly available multimodal MR datasets enables analysis of the structure and function of
the human brain at an unprecendented scale. Alongside development of tools and standards for this data, neu-
roinformatics studies regularly uncover evidence for patterns between behaviour and structure of the brain. As
the field of data collection paradism and processing tools grows, findings made across studies are becoming
increasingly diŻcult to compare. We have developed a turn-key pipeline for reliable structural connectome es-
timation at scale, and use it as a framework for harmonized data processing and performing “meganalaysis”
across collections of data. We demonstrate this framework by estimating 2,861 connectomes, and by virtue of
harmonized data processing show that while we can yield qualitatively similar graphs, results are meaningfully
quantitatively diŷerent across datasets.

1 Introduction

Neuroimaging methods such as MRI are becoming
increasingly more accessible and available for use
across both clinical and research populations. With
contrast highlighting connective tissue within the
brain (i.e. white matter), Diŷusion Weighted MRI
(DWI) in particular enables the study of structural
networks within the brain. As such, DWI data is be-
ing collected at an unprecedented rate, and publicly
available datasets of both healthy and diseased pop-
ulations are increasingly commonplace [1–3].

Generating consistently reliable estimates of
brain connectivity graphs, or connectomes, has thus
far been challenging [4]. Variation in data quality and
properties across studies or collections makes the
selection of globally robust parameters diŻcult, and
“standard” processing methods operating on multi-
modal MRI (M3R) data have a history of reporting
misleadingly low false positive rates [5], resulting in
claims that may not generalize across datasets.

Existing tools such as PANDAS [6] and CMTK [7]
tackle the challenge of robustness by enabling users
to select hyper-parameters for their dataset. This
freedom of course emphasizes the between-dataset
diŷerences in connectomes estimated with varying
processing parameters, and cannot necessarily be
directly compared.

The MRCAP [8] and MIGRAINE [9] pipelines ab-
stract hyper-parameter selection from the user, en-
suring that all data is processed identically. While
these pipelines produced harmonized results, they
have limitations in their ability to be repeatably de-
ployed across hardware and computing environ-
ments. This significantly impacts the ability of re-
searchers to generate connectomes for large co-
horts or collections of data.

We present NDMG, a reliable and robust turn-key
solution for structural connectomes estimation that
can be deployed at scale either in the cloud or locally
for cross-study analysis. Leveraging existing tools
such as FSL [10–12], Dipy [13], the MNI152 brain at-
las [14] and others, NDMG is a one-click pipeline that
lowers the barrier to entry for connectomics. By
virtue of harmonized processing, the NDMG pipeline
enables scientific “meganalysis” in which data from
multiple studies can be pooled, opening the door for
more highly generalizable statistical analyses of the
structure of the human brain. Connectomes from
2,861 DWI sessions and across 24 brain atlases have
been generated with NDMG and have been released
to the public.
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Figure 1: ndmg usageworkflow. The NDMG pipeline enables rapidly going from data collection to analysis
at multiple levels: participant-, group-, and meganalysis. While participant-level analysis generates con-
nectomes from diŷusion MRI data, group-level analysis computes and plots a variety of graph statistics
on the derived connectomes, both individually and as a group. The derivatives from all stages of NDMG are
computed consistently and reliably across sessions and datasets, enabling the pooling of data for doing
“meganalysis.”.

2 Results

The NDMG pipeline was developed to provide robust
and reliable connectome estimation parallely in the
cloud, with a low barrier to entry for users. The
NDMG package and pipeline is open-source and avail-
able on Github1, and has been configured in several
large public-facing platforms, including CBRAIN [15]
andOpenNeuro [16], aswell as theAmazonWebSer-
vices computing cloud [17; 18].

The NDMG pipeline enables three tiers of analysis:
participant-level, group-level, and meganalysis. Fig-
ure 2 illustrates how NDMG can be used to perform
computation for each of these analysis levels.

When data is collected as part of a study, it can
be organized in accordance to the BIDS [19; 20]
organization standard. Each session of data, con-
sisting of a structural scan (T1w/MPRAGE), a diŷu-
sion scan (DWI), and the diŷusion parameters files
(b-values, b-vectors), can then be used as inputs
to generate a connectome. As summarized in Fig-
ure 2, NDMG performs registration, tensor estima-
tion, tractography, and graph generation for each
session. Connectomes are generated atmultiple res-
olutions based on neuroanatomical parcellations de-
fined inMNI152 [14] space. Participant-level analysis
in NDMG takes approximately 1-hour to complete us-
ing 1 CPU core and 12 GB of RAM.

Once participant-level analysis has completed for
a cohort of data, NDMG group-level analysis can be
performed on the generated graphs. At this stage,
summary statistics are computed for all graphs gen-

erated within the dataset. These statistics are then
plotted for additional quality assurance by the scien-
tist, and saved for rigorous quantitative evaluation.

Since NDMG processes all participants and groups
identically, it enables the pooling of data across co-
horts, a principle we here refer to as “meganalysis.”
This enables scientists to expand the sample repre-
sented within their analyses and potentially improve
their statistical power and ultimately the scientific
impact of their findings.

2.1 Subject-Level Analysis

The participant level of NDMG has been developed
by leveraging and interfacing existing tools, includ-
ing FSL [10–12], Dipy [13], the MNI152 atlas [14],
and a variety of parcellations defined in the MNI152
space [21–27]. All algorithms which required hyper-
parameter selection were initially set to the sug-
gested parameters for each tool, and tuned to im-
prove the quality, reliability, and robustness of the
results.

Conceptually, this pipeline can be broken up
into four key components: Registration, Tensor Es-
timation, Tractography, and Graph Generation. The
NDMG pipeline has been validated through reliability
on test-retest datasets. While each of these steps is
described here, an in-depth look at the specificmod-
els and algorithms implemented at each stage con-
tained within Appendix A.

Each stage of NDMG is accompanied by quality
assurance (QA) figures, enabling the user to easily
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Figure 2: ndmg participant-level analysis. The participant-level of the NDMG pipeline transforms raw
diŷusion weightedMRI data into structural connectomes. Here, NDMG consists of four main steps: Regis-
tration, Tensor Estimation, Tractography, and Graph Generation . At each stage, NDMG produces quality
assurance figures of the derivatives, as can be seen in as the icon for each stage above.

detect whether or not the pipeline is producing ex-
pected results, both for intermediate derivatives as
well as the resulting connectomes. Snapshots of
these QA figures are shown throughout Figure 2.

Registration In order for connectomes to be
compared, theymust be defined in the same space –
such as that definedby theMNI152 [14] reference at-
las. NDMG leverages FSL [10–12] for a series of linear
registrations, the end result of which is the input dif-
fusion weighted volume aligned to the MNI152 atlas.
The registration pipeline implemented is “standard”
when working with diŷusion data and FSL’s tools.

The QA figure produced at this stage is several
snapshots of an overlay of the inputted DWI image
and the MNI152 template, allowing the user to verify
that the brain boundary and higher-level structures
of the input image have been closely aligned to the
atlas.

Tensor Estimation Once the DWI image is
aligned, the b-values and b-vectors are interpreted
and enable the generation of a voxelwise tensor
image from the DWI image stack. A simple 6-
component tensormodel from theDipy [13] package
is used.

Associated with the resulting tensor image is a
fractional anisotropy map of the tensors, which can
be used for analysis and QA. Thismap allows the user
to inspect the global structure and arrangement of
the tensors, and whether they conform to the ex-
pected structure of the brain, such as a high den-
sity of contra-lateral connectivity through the corpus
callosum.

Tractography Streamlines are generated from
the tensors using Dipy’s EuDX [28], a deterministic
tractography algorithm closely related to FACT [29].
Each voxel within the brain mask is used as a seed-
point in EuDX, and fibers are then pruned based on
their length.

NDMG provides a QA plot visualizing a subset
of the generated streamlines within a mask of the
MNI152 brain so that the user can verify that no
fibers leave the brain and that their structure resem-
bles that of the fractional anisotropy map generated
in the previous step.

Graph Generation Connectomes are created by
tracing fibers through pre-defined parcellations.
The parcellations used have been defined by neu-
roanatomists, such as the HarvardOxford cortical
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atlas [24], JHU [23], Talairach [25], Desikan [21],
and AAL [22] atlases, or generated by segmenta-
tion algorithms, such as slab907 [26], Slab1068 [27],
CC200 [30] and 16 downsampled (DS) parcella-
tions [31] ranging from 70 to 72,783 nodes. An undi-
rected edge is added to the graph for every pair of
regions each a fiber, where the weight of the edge
is the cumulative number of fibers between two re-
gions.

An adjacency matrix summarizing the derived
connectome is provided as a QA figure and enables
users to verify the expected organization of edges
and possible hemisphere structure within the graph.

Validation Results from NDMG have been vali-
dated using a statistically generalized form of test-
retest reliability [32], and will be referred to as relia-
bility for the remainder of this manuscript.

Reliability, as seen in Equation (1), describes the
probability that two observations within the same

class are more similar to one another than to objects
belonging to a diŷerent class:

D = p(||aij − aij′ || ≤ ||aij − ai′j′ ||). (1)

In the context of validation in NDMG, this means
that the each connectome, aij , in a test-retest
dataset is first compared to other connectomes be-
longing to the same subject, aij′ , and then to all con-
nectomes belonging to other subjects, ai′j′ . A per-
fect reliability score is 1, meaning that for all obser-
vations within the dataset, each connectome ismore
alike to connectomes from the same subject than
to others. The reliability score obtained if a pipeline
produced random outputs is summarized in Equa-
tion (2), and is a function of the number of classes,
k, the number of elements in each class,Mi, and the
total number of observations,N :

C =

∑k
i∈k M

2
i

N2
. (2)

Figure 3: Graph summary statistics. NDMG computes and plots of connectome-specific summary statis-
tics after estimating graphs for a dataset, serving as both quality assurance and a spring-board for ex-
ploratory analysis.
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Optimizing NDMG with respect to reliability en-
ables us to minimize the upper-bound on error for
any general downstream inference task. Using reli-
ability for optimization also prevents over-fitting to
covariate-specific signal (i.e. in contrast to optimiz-
ing the pipeline for sex classification).

2.2 Group-Level Analysis

Once connectomes have been generated for a
dataset, NDMG group-level analysis computes and
plots graph summary statistics, as can be seen in
Figure 3 for graphs generated with the Desikan [21]
parcellation. The summary statistics computed have
been chosen as they highlight features of connec-
tomes that are expected to vary based on brain re-
gion – for instance, it is expected that regions will
have higher connectivity if they are more central.

The features of the graphswhichNDMG computes
are [31], clockwise from top-left: betweenness cen-
trality, clustering coeŻcient, hemisphere-separated

degree sequence, edge weight, eigen values, locality
statistic-1, number of non-zero edges, and themean
connectome.

These statistics enable detailed quality assur-
ance of the graphs; for instance, enabling the user
to confirm that edge density is higher ipsi-laterally
than contra-laterally, and thus serve as a preliminary
exploratory analysis of the processed data. These
statistics are tabulated and links to their implemen-
tations made available in Appendix B.

Multi-Scale Analysis As NDMG produces con-
nectomes across a variety of parcellations, it enables
multi-scale analysis and flexibility for users. Figure 4
shows the group-level summary statistics of con-
nectomes belonging to same dataset over a range
of parcellations. Though the parcellations used in
NDMG range in number of nodes from 48 to 72,783,
only those with nodes under 500 nodes are shown in
Figure 4.

To compare the vertex statistics across scales,

Figure 4: Multi-scale graph analysis. NDMG produces connectomes at a variety of scales, enabling in-
vestigation of graph properties between parcellation schemes. We can observe that the statistics are
qualitatively similar in shape across scales, however, they are quantitatively significantly diŷerent. This
suggests that claimsmade or analyses performed on a given scale may not hold when applied to another
scale. This is impactful, as the choice of parcellation has significant bearing on the results of a scientific
study.

http://neurodata.io
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Table 1: Processed public M3R datasets. The derivatives from each dataset processed with NDMG are publicly
available at http://m2g.io. Test-ReTest (TRT) datasets were evaluated using reliability, where 1 indicates per-
fectly reliable connectomes. The pooled reliability is the computed when all TRT datasets are analyzed together.
Age is reported as the dataset mean± standard deviation. Rep’s is the number of scans per subject.

Dataset Scanner # Dirs Age (yrs) %Male # Subj’s Rep’s Total Scans TRT
BNU1 [2] Siemens 30 23.0± 2.3 53 57 2 114 0.984
BNU3 [2] Siemens 64 22.5± 2.1 50 48 1 47 –
HNU1 [2] GE 33 24.4± 2.3 50 30 10 300 0.993
KKI2009 [33] Philips 33 31.8± 9.4 52 21 2 42 1.0
MRN1313 – 70 – – 1313 1 1299 –
NKI1 [2] Siemens 137 34.4± 12.8 0 24 2 40 0.984
NKI-ENH [34] Siemens 137 42.5± 19.6 40 198 1 198 –
SWU4 [2] – 93 20.0± 1.3 51 235 2 454 0.884
Templeton114 Siemens 70 21.8± 3.0 58 114 1 114 –
Templeton255 Siemens 150 – – 255 1 253 –
Pooled 2295 2861 0.979

their values were normalized and densities were
computed and plotted. Aswe can see in Figure 4, the
shape of the distributions for each statistic are rela-
tively similar across scales. In particular, we notice
that graphs from the the downsampled block-atlases
(DS) appear to be scaled versions of one another,
as is expected as they are related to one-another
by a region-growing function [31]. However, graphs
from the smaller DS parcellations look less similar to
those from the neuroanatomically defined parcella-
tions (JHU [23], Desikan [21], HarvardOxford [24],
CC200 [30]). This suggests that the neuroanatom-
ically defined parcellations are more similar to one
another than they are to the downsampled parcel-
lations.

2.3 Meganalysis

TheNDMGpipeline has been used to process ten pub-
lic datasets, upon which it demonstrated that it is
highly reliable and robust. Table 1 summarizes the
2,861 scans processed with NDMG; each scan pro-
cessed was used to generate connectomes across
each of the 24 parcellations in NDMG, resulting in
68,664 total graphs. All of the derived graphs and
intermediate derivatives have been made publicly
available on our Amazon S3 bucket, mrneurodata,
and can also be accessed through http://m2g.io.

As NDMG harmonized connectome generation,
we were able to perform meganalysis towards the
evaluation of an essential pillar of scientific discov-
ery: reproducibility of findings across datasets.

Qualitative Similarity Across Datasets

Though inter-subject variability is expected, observ-
ing summary statistics or graphs of the average con-
nectome in a dataset are expected to be relatively
robust to this variability when studying healthy pop-
ulations, suggesting that each dataset will look simi-
lar. Figure 5 shows a variety of uni– andmulti-variate
statistics of the average connectome from each of
the datasets enumerated in Table 1 using theDesikan
parcellation.

Each dataset largely appears to have similar
trends across each of the statistics shown. Though
the KKI2009 [33] dataset appears to be consistent
with the others when investigating the edge weight
or number of non-zeros plots, the degree sequence
and clustering coeŻcient plots in particular highlight
that the KKI2009 dataset may be an outlier com-
pared to the others. A possible cause of this diŷer-
ence is the scanner manufacturer, as the KKI2009
dataset was acquired with a Philips scanner while
all of the other datasets were acquired with either
Siemens scanners, or in one case a GE scanner.
While the remaining datasets have variation between
them, they appear to trend more closely together.

Figure 6 shows themean connectome computed
from each dataset, as well as the weighted mega-
mean and mega-standard deviation connectomes
combining all datasets. As with the multivatiate
statistics, datasetmeans have very similar structures
and intensity profiles, with minor noticeable diŷer-
ences predominantly visible in the contra-lateral (oŷ-
diagonal) blocks. Considering 2,861 sessions, we

http://neurodata.io
http://m2g.io
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Figure 5: Multi-site graph analysis. Average connectomes from ten datasets processed with NDMG are
qualitatively compared by way of their summary statistics on the Desikan parcellation. The Desikan atlas
used in NDMG has been modified to include two additional regions, one per hemisphere, which fills in a
hole in the parcellation near the corpus callosum. The nodes in this plot have been sorted such that the
degree sequence of the left hemisphere (Desikan nodes 1-35) of the BNU1 dataset is monotonically non-
decreasing, and that corresponding left-right nodes are next to one another. The interactive version of
this plot, available through http://m2g.io, provides hover-text of the region names.

believe this mega-mean connectome to have the
highest-N of any mean connectome computed to
date.

Several properties of the connectomes are
present across all datasets, such as that they contain
a high number of ipsi-lateral connections relative to
a lower number of contra-lateral connections. The
standard deviation connectome also shows that the
ipsi-lateral connectivity is also more highly variable,
suggesting that there exists a relationship between
connection density and variability. The relationship
between connection density and variability is consis-
tent to that of an Erdős-Rényi randomgraph, amodel
previously used in connectomics [35]. We also notice
that the ipsi-lateral connectivity within left (nodes
1-35) and right (nodes 36-70) hemispheres, respec-
tively, are very similar in structure. An interactive
version of this figure can also be found on our web-
site2.

Figures 5 and 6 show similar structure and prop-

erties of connectomes across datasets. Though the
datasets deviate from one another, this perceived
“batch eŷect” appears to be relatively minor based
on commonly assessed properties of connectomes,
suggesting that either qualitative analysis is insuŻ-
cient for detecting batch eŷects or that batch eŷects
do not play a significant role in this data.

2.4 Quantitative Difference Across Datasets

Though qualitative analysis allows us to do basic
quality assurance and verify that the structure and
general properties of our connectomes are consis-
tent across datasets, it is insuŻcient if we wish to
quantify the similarity of our datasets and by exten-
sion the claimsmade from them, leaving the general-
izability of scientific findings up for debate. Through
Reliability [32] we have been able to quantify the sig-
nificance of batch eŷects in DWI data. We can use
reliability to evaluate the similarity corresponding to

http://neurodata.io
http://m2g.io
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Figure 6: Multi-StudyMean Connectomes. Dataset-mean connectomes and a combinedmean-of-mean
and standard deviation-of-mean connectomes were computed from the Desikan labeled graphs pro-
duced by NDMG, resulting in the largest known mean connectome to-date, consisting of 2,861 sessions.
Datasets appear qualitatively similar to one another, with minor deviations particularly visible in the
contra-lateral regions of the graphs. As expected, ipsi-lateral connectivity is consistently more dense
than contra-lateral connectivity. Similarly, the standard deviation connectome, which highlights edges
that are more highly variable, shows higher ipsi-lateral variance. This suggests that not only are these
connections more likely to occur, but they have a higher variance, as well.

connectomes within and across dataset; here, un-
like during the pipeline optimization shown in Ta-
ble 1, a low reliability is desirable for this meganal-
ysis. Chance performance, indicating that connec-
tomes were all equally similar regardless of dataset,
can be calculated using Equation (2).

The reliability across the non-TRT selection of
scans (2,295 sessions rather than 2,861) was com-
puted, for which chance is 0.363. The computed re-

liability was 0.632, suggesting considerable dataset-
specific signal is present at a significance of p <
0.0001 when performing a permutation test. The
diŷerences between 20 randomly-selected graphs in
each dataset is summarized in Figure 7.

As there is an obvious visual diŷerence between
KKI2009, acquired on a Philips scanner, and the
other datasets, acquired prodominantly on Siemens
scanners and one using GE, the reliability was also

http://neurodata.io
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Figure 7: Prevalence of batch eŷects. Discriminability was computed across the ten processed datasets
using the dataset-id as the class label. If no significant diŷerence between datasets exists, the discrim-
inability scorewould not be significantly diŷerent fromchance, a score of 0.363. Here, the discriminability
score was 0.632, which is significant with a p-value of less than 0.0001 when performing a permutation
test, suggesting that there is significant dataset specific signal in the graphs.

http://neurodata.io
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Figure 8: Connectome Sex Classification. Using K-Nearest Neighbours classification, several cross-
validation attempts were made on “raw” and further post-processed connectomes to improve accuracy
in sex classification. The cross-validations methods were leave-out-one (LOO): session, subject, dataset,
dataset with unit normalization, dataset with subtracting cohort means, and dataset with subtracting
cohort and population means. If the batch eŷects were insignificant, then we would expect all methods
to have equivalent performance except for LOO session, which serves as a upper bound. We notice that
LOO subject performs the greatest of these approaches, indicating that there is considerable batch eŷect,
and that post-processing attempts did not eŷectively mitigate these diŷerences.

computedwhenomitting theKKI2009datasetwhich
resulted in a score of 0.626, a value still significant
with p < 0.0001. Also removing the sole dataset us-
ing a GE scanner, HNU1, we compute the reliability
score considering only data from Siemens sites to be
0.627, which is also significant at p < 0.0001.

Figure 8 demonstrates the prevalence of this
eŷect in a naive sex classification task. Several
post-hoc normalization attempts were made to re-
duce the impact of batch eŷects, such as unit-
normalizing connectomes, subtracting the cohort-
mean, and subtracting the cohort-mean and then
the population-mean. Classification attempts based
on all leave-out-one (LOO) dataset cross-validation
methods are within chance performance, where LOO
subject performance is consistently higher. This sug-
gests that connectome normalization is insuŻcient
for addressing batch eŷects.

3 Discussion

The NDMG pipeline is a highly-reliable tool for struc-
tural connectomeestimationwith a lowbarrier to en-
try for neuroscientists, and has shown that it is ca-
pable of producing meaningful and consistent brain-
graphs across scales and datasets. NDMG abstracts
hyper-parameter selection from users by providing
a default setting that has been used to demonstrate
robustness across a variety of datasets, achieving
matched or improved reliability when performing
either single- or multi-dataset analysis compared
to alternatives [4; 36]. Though this generalizabil-
ity means that NDMG may not use the optimal pa-
rameters for a given dataset, it provides a consis-
tent estimate of connectivity across a wide range of
datasets and makes comparing graphs trivial across
studies, avoiding overfitting of the pipeline to a spe-
cific dataset. Though NDMG has been optimized
with respect to reliability, an exhaustive hyper-
parameter sweep optimizing each parameter selec-

http://neurodata.io
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tion in NDMG has not yet been conducted. Perform-
ing such anoptimization over a rangeof datasets and
maximizing their joint reliability would improve the
reliability of NDMG even further. Though this has not
occurred, an important contribution of NDMG is the
illustration that highly sophisticated and computa-
tionally burdensome algorithms such as probabilistic
tractography are not necessary to create reliable es-
timates of brain connectivity. Evaluating the quality
of connectomeestimation pipelines using probabilis-
tic tractography with discriminability would enable a
decisive answer to the question of when determin-
istic or probabilistic tractography is a more reliable
when estimating connectivity, and by how much.

By harmonizing data processing we have been
able to remove processing variation and in a
statistically-principled manner quantitatively com-
pare connectomes across datasets. We show that
while derivatives are qualitatively similar across co-
horts, these batch eŷects are significant when per-
forming quantitative analysis. A consequence of
this is that clinical assays or scientific findings made
on one group of data may not generalize across
datasets, even in the case of harmonized processing.

Multi-site predictive tasks have been performed
considering fMRI-derived connectomes from the
ABIDE dataset [37], and performing similar analy-
ses upon a multi-dataset collection of DWI-derived
connectomes is an exciting avenue for future ex-
ploration. Additionally, a variety of studies pro-
pose methods for data harmonization upon either
minimally pre-processed or raw M3R data [38–40]
which could be explored within the context of the
NDMG pipeline.

As NDMG is highlymodular, it can serve as a refer-
ence pipeline for data harmonization techniques or
specific processing algorithms used in connectome
estimation. Through the use of discriminability, the
NDMG pipeline can be modified and tested against
the original, both to observe the pipeline’s reliabil-
ity and the prevalence of covariate-specific signal.
When algorithms robustly improve NDMG, they may
be integrated into the pipeline and both i) improve
the quality of the NDMG reference pipeline, as well as
ii) provide a strong statistical basis for the develop-
ment, publication, and use of new algorithms.

Integration of NDMG with computing platforms
such as OpenNeuro, CBRAIN, and Amazon makes it
an accessible choice for neuroscientists who are lim-

ited in their in-house compute infrastructure or ex-
perience deploying pipelines on high performance
computing clusters.

Through the use and development of NDMG we
have simultaneously lowered the barrier to entry
for performing connectomics research and demon-
strated a statistically-principled method for evaluat-
ing the reliability of pipelines and data. NDMG fur-
ther democratizes human connectomics research,
enabling users to produce statistically-validated con-
nectomes at an unprecedented scale with ease and
perform meganalysis across broad cohorts of data.
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Appendix A Processing Pipeline

Herewe take adeep-dive into eachof themodules of theNDMGpipeline. Wewill explain algorithmandparameter
choices that were implemented at each step, and the justification for why they were used over alternatives.

Appendix A.1 Registration

Registration in NDMG leverages FSL and the Nilearn Python package. The primary concern in develpment of
NDMG was the reliability and robustness of each step. Additionally, a desired feature of the pipeline was that it
could be run on non-specialized hardware in a timeframe that didn’t significantly hinder the rate of progress
of scientists who wish to use it. As such, NDMG uses linear registrations, as non-linear methods were found to
have higher variability across datasets while simultaneously increasing the resource and time requirements of
the pipeline.

As is seen in Figure 9B1, the first registration step is Eddy-current correction and DWI self-alignment to the
volume-stack’s B0 volume. FSL’s eddy_correct was used to accomplish this. The eddy_correct function was
chosen over the newer eddy function as the eddy function, while providing more sophisticated denoising, takes
significantly longer to run or relies on GPU acceleration, which would reduce the accessiblity of NDMG.

Once the DWI data is self aligned, it is aligned to the same-subject T1w image through FSL’s epi_reg. This

Registration

Leverages:   FSL, MNI152

Graph Generation

Leverages:    Parcellations

B1. Registration B2. Tensor Estimation B3. Tractography B4. Graph Generation

              ndmg pipeline

T1w MRI

DWI MRI

Tensor Estimation &  
Tractography

Leverages:   DiPy, MNI152

eddy_cor r ect

epi _r eg f l i r t

appl y_xf m

make_gr aphTensor Model ,
        f i t

gr adi ent _t abl e

     get _spher e,
 quant i ze_evecs,

          EuDX

DWI
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Connectome
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B-vectors B-values
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Figure 9: ndmg detailed pipeline. The NDMG pipeline consists of 4 main steps: Registration (B1), Tensor
Estimation (B2), Tractography (B3), and Graph Generation (B4). Each of these sections leverages pubicly
available tools and data to robustly produce the desired derivative of each step. Alongside derivative
production, NDMG produces QA figures at each stage, as can be seen in B1-4, that enable qualitative
evaluation of the pipeline’s performance.
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tool performs a linear alignment between each image in the DWI volume-stack and the T1w volume.
The T1w volume is then aligned to the MNI152 template using linear registration computed by FSL’s flirt.

This alignment is computed using the 1mm MNI152 atlas, as this enables higher freedom in terms of the par-
cellations that may be used, such as near-voxelwise parcellations that have been generated at 1mm. FSL’s
non-linear registration, fnirt, is not used in NDMG as the performance was found to vary significantly based on
the collection protocol of the T1w images, often resulting in either slightly improved or significantly dteriorated
performance.

The tranform mapping the T1w volume to the template is then applied to the DWI image stack, resulting
in the DWI image being aligned to the MNI152 template in real-coordinate space. However, while flirt aligns
the images in real space, it does not guarantee an overlap of the data in voxelspace. Using Nilearn’s resample,
NDMG ensures that images are aligned in both voxel- and real-coordinates so that all analyses can be performed
equivalently either with or without considering the image aŻne-transformsmapping the datamatrix to the real-
coordinates.

Finally, NDMG produces a QA plot showing 3 slices of the first B0 volume of the aligned DWI image overlaid
on the MNI152 template in the 3 principle coordinate planes, providing 9 plots in total which enable qualitative
assesment of the quality of alignment.

Appendix A.2 Tensor Estimation

Once the DWI volumes have been aligned to the template, NDMG begins doing diŷusion-specific processing on
the data. All diŷusion processing in NDMG is performed using the Dipy Python package. The diŷusion processing
in NDMG is performed after alignment because in order to compare connectomes to one another they must be
generated in the same space.

While high-dimensional diŷusion models such as orientation distribution functions (ODFs) or qBall impres-
sively allow reconstruction of crossing fibers and complex fiber trajectories, these methods have yet to be
demonstrated as eŷectivemodels when there are not a large number of diŷusion volumes/directions for a given
image. As NDMGwas required to run robustly on as broad a range DWI datasets as possible, a lower-dimensional
tensor model was used. The model, described in detail on Dipy’s website3, computes a 6-component tensor for
each voxel in the image, reducing the DWI image stack to a single image which can be used for tractography.

Once tensor estimation has been completed, a similar plot as to that produced for registration QA is pro-
duced, showing slices of the FA map derived from the tensors in 9 panels enabling visual inspection of the
derivatives.

Appendix A.3 Tractography

In keeping with the theme of robust and widely-applicable methods, tractography was performed with Dipy’s
deterministic tractography algorithm, EuDX. Integration of tensor estimation and tractography methods was
minimally complex with this tractography method, as it has been designed to operate on the tensors produced
by Dipy in the previous step. The EuDX tracing algorithm has been shown to be a robust and computationally
eŻcient algorithm for generating streamlines. Probabilistic tractography provides a probability distribution for
points along streamlines, which has been shown to be beneficial when working with higher-dimensional diŷu-
sion representations. Ultimately, as fibers will be resolved into edges in a graph produced by NDMG, if probabilis-
tic fibers were generated they would have to be thresholded or discretized, limiting the benefit of performing
probabilistic tractography even if the diŷusion model used were high enough order to benefit from it directly.

A subset of the resolved streamlines are visualized in an axial projection of the brain mask with the fibers
contained, allowing the user to verify that streamlines are following expected patterns within the brain and do
not leave the boundary of the mask.
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Appendix A.4 Graph Estimation

The fiber streamlines produced in the previous step are used by NDMG to generate connectomes across multiple
parcellations. The connectomes generated are graph objects, with nodes in the graph representing regions of
interest (ROIs), and edges representing connectivity via fibers. Each streamline is traversed and the ROIs which it
touches are recorded, ultimately with an edge being added to the graph for all corresponding pairs of ROIs along
a streamline. AsM3R imagingprovides insuŻcient resolution to recover the direction of flow, anundirected edge
is added. Edge weight is determined by the number of streamlines which pass through a given pair of regions -
i.e. each fiber connecting regions A and B adds a weight of 1 between them in the graph. Other measures such
as fiber length or mean FA along the streamline have not been implemented but could serve as replacements
for fiber count, given that a mechanism for combining these values over multiple fibers or normalizing them by
the fiber count through a region are also considered.

The parcellations used inNDMGwere selected based on availability and use in theDWI processing community.
Useof additional parcellations is trivial withNDMG, further enabling analysis to occur across a variety of scales and
users to produce a range of connectomes that compliment one another and can be used either independently
or for multiscale analyses.

Appendix B Graph Summary Statistics

When NDMG produces graphy summary plots it computes eight node- or edge-wise statistics of the connec-
tomes, and displays them for comparison across sessions within the analyzed cohort. The statistics computed
were chosen based on their relevance to the field of connectomics and aim to shed light on properties of the
graph in which researchers find relevance. The graph statistics are primarily computed with NetworkX and
Numpy, and all implementations for NDMG live within the graph_qa module4. Below, for each statistic we pro-
vide a link to the code/documentation of the statistic as it was implemented.

Table 2: Graph statistics. Each of the graph statistics computed by NDMG.

Statistic Implementation
Betweenness Centrality NetworkX
Clustering CoeŻcient NetworkX
Degree Sequence NetworkX
Edge Weight Sequence NetworkX
Eigen Values NetworkX and Numpy
Locality Statistic-1 ndmg and NetworkX
Number of Non-Zero Edges NetworkX
Cohort Mean Connectome Numpy

Notes

1https://github.com/neurodata/ndmg
2https://github.com/neurodata/ndmg-paper/tree/master/code/meanconnectome
3http://nipy.org/dipy/examples_built/reconst_dti.html
4https://github.com/neurodata/ndmg/blob/master/ndmg/stats/qa_graphs.py
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https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.cluster.clustering.html
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.classes.function.degree.html#networkx.classes.function.degree
https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.classes.function.get_edge_attributes.html#networkx.classes.function.get_edge_attributes
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