ndio.convert.tiff module
from __future__ import absolute_import from PIL import Image import numpy import os import glob def load(tiff_filename): """ Import a TIFF file into a numpy array. Arguments: tiff_filename: A string filename of a TIFF datafile Returns: A numpy array with data from the TIFF file """ # Expand filename to be absolute tiff_filename = os.path.expanduser(tiff_filename) try: img = Image.open(tiff_filename) except Exception as e: raise ValueError("Could not load file {0} for conversion." .format(tiff_filename)) raise return numpy.array(img) def save(tiff_filename, numpy_data): """ Export a numpy array to a TIFF file. Arguments: tiff_filename: A filename to which to save the TIFF data numpy_data: The numpy array to save to TIFF Returns: String. The expanded filename that now holds the TIFF data """ # Expand filename to be absolute tiff_filename = os.path.expanduser(tiff_filename) if type(numpy_data) is str: fp = open(png_filename, "wb") fp.write(numpy_data) fp.close() return png_filename try: img = Image.fromarray(numpy_data) img.save(tiff_filename) except Exception as e: raise ValueError("Could not save TIFF file {0}.".format(tiff_filename)) return tiff_filename def save_collection(tiff_filename_base, numpy_data, start_layers_at=1): """ Export a numpy array to a set of TIFF files, with each Z-index 2D array as its own 2D file. Arguments: tiff_filename_base: A filename template, such as "my-image-*.tiff" which will lead to a collection of files named "my-image-0.tiff", "my-image-1.tiff", etc. numpy_data: The numpy array data to save to TIFF. Returns: Array. A list of expanded filenames that hold TIFF data. """ file_ext = tiff_filename_base.split('.')[-1] if file_ext in ['tif', 'tiff']: # Filename is "name*.tif[f]", set file_base to "name*". file_base = '.'.join(tiff_filename_base.split('.')[:-1]) else: # Filename is "name*", set file_base to "name*". # That is, extension wasn't included. file_base = tiff_filename_base file_ext = ".tiff" file_base_array = file_base.split('*') # The array of filenames to return output_files = [] # Filename 0-padding i = start_layers_at for layer in numpy_data: layer_filename = (str(i).zfill(6)).join(file_base_array) + file_ext output_files.append(save(layer_filename, layer)) i += 1 return output_files def load_collection(tiff_filename_base): """ Import all files matching the filename base given via `tiff_filename_base`. Images are ordered by alphabetical order, which means that you *MUST* 0-pad your numbers if they span a power of ten (e.g. 0999-1000 or 09-10). This is handled automatically by the complement function, `save_collection`. Also, look at how nicely these documentation lines are all the same length! Arguments: tiff_filename_base: An asterisk-wildcard string that should refer to all TIFFs in the stack. All * are replaced according to command-line expansion rules. Returns: A numpy array holding a 3D dataset """ # We expect images to be indexed by their alphabetical order. files = glob.glob(tiff_filename_base) files.sort() numpy_data = [] for f in files: numpy_data.append(load(f)) return numpy.concatenate(numpy_data)
Functions
def load(
tiff_filename)
Import a TIFF file into a numpy array.
Arguments: tiff_filename: A string filename of a TIFF datafile
Returns: A numpy array with data from the TIFF file
def load(tiff_filename): """ Import a TIFF file into a numpy array. Arguments: tiff_filename: A string filename of a TIFF datafile Returns: A numpy array with data from the TIFF file """ # Expand filename to be absolute tiff_filename = os.path.expanduser(tiff_filename) try: img = Image.open(tiff_filename) except Exception as e: raise ValueError("Could not load file {0} for conversion." .format(tiff_filename)) raise return numpy.array(img)
def load_collection(
tiff_filename_base)
Import all files matching the filename base given via tiff_filename_base
.
Images are ordered by alphabetical order, which means that you MUST 0-pad
your numbers if they span a power of ten (e.g. 0999-1000 or 09-10). This is
handled automatically by the complement function, save_collection
.
Also, look at how nicely these documentation lines are all the same length!
Arguments: tiff_filename_base: An asterisk-wildcard string that should refer to all TIFFs in the stack. All * are replaced according to command-line expansion rules. Returns: A numpy array holding a 3D dataset
def load_collection(tiff_filename_base): """ Import all files matching the filename base given via `tiff_filename_base`. Images are ordered by alphabetical order, which means that you *MUST* 0-pad your numbers if they span a power of ten (e.g. 0999-1000 or 09-10). This is handled automatically by the complement function, `save_collection`. Also, look at how nicely these documentation lines are all the same length! Arguments: tiff_filename_base: An asterisk-wildcard string that should refer to all TIFFs in the stack. All * are replaced according to command-line expansion rules. Returns: A numpy array holding a 3D dataset """ # We expect images to be indexed by their alphabetical order. files = glob.glob(tiff_filename_base) files.sort() numpy_data = [] for f in files: numpy_data.append(load(f)) return numpy.concatenate(numpy_data)
def save(
tiff_filename, numpy_data)
Export a numpy array to a TIFF file.
Arguments: tiff_filename: A filename to which to save the TIFF data numpy_data: The numpy array to save to TIFF
Returns: String. The expanded filename that now holds the TIFF data
def save(tiff_filename, numpy_data): """ Export a numpy array to a TIFF file. Arguments: tiff_filename: A filename to which to save the TIFF data numpy_data: The numpy array to save to TIFF Returns: String. The expanded filename that now holds the TIFF data """ # Expand filename to be absolute tiff_filename = os.path.expanduser(tiff_filename) if type(numpy_data) is str: fp = open(png_filename, "wb") fp.write(numpy_data) fp.close() return png_filename try: img = Image.fromarray(numpy_data) img.save(tiff_filename) except Exception as e: raise ValueError("Could not save TIFF file {0}.".format(tiff_filename)) return tiff_filename
def save_collection(
tiff_filename_base, numpy_data, start_layers_at=1)
Export a numpy array to a set of TIFF files, with each Z-index 2D array as its own 2D file.
Arguments: tiff_filename_base: A filename template, such as "my-image-*.tiff" which will lead to a collection of files named "my-image-0.tiff", "my-image-1.tiff", etc. numpy_data: The numpy array data to save to TIFF.
Returns: Array. A list of expanded filenames that hold TIFF data.
def save_collection(tiff_filename_base, numpy_data, start_layers_at=1): """ Export a numpy array to a set of TIFF files, with each Z-index 2D array as its own 2D file. Arguments: tiff_filename_base: A filename template, such as "my-image-*.tiff" which will lead to a collection of files named "my-image-0.tiff", "my-image-1.tiff", etc. numpy_data: The numpy array data to save to TIFF. Returns: Array. A list of expanded filenames that hold TIFF data. """ file_ext = tiff_filename_base.split('.')[-1] if file_ext in ['tif', 'tiff']: # Filename is "name*.tif[f]", set file_base to "name*". file_base = '.'.join(tiff_filename_base.split('.')[:-1]) else: # Filename is "name*", set file_base to "name*". # That is, extension wasn't included. file_base = tiff_filename_base file_ext = ".tiff" file_base_array = file_base.split('*') # The array of filenames to return output_files = [] # Filename 0-padding i = start_layers_at for layer in numpy_data: layer_filename = (str(i).zfill(6)).join(file_base_array) + file_ext output_files.append(save(layer_filename, layer)) i += 1 return output_files