Speakers

Anima Anandkumar
Yoshua Bengio
Michael Buice
David Cox
Mitya Chklovskii
Sophie Denève
Emily Fox
Surya Ganguli
Fred Hamprecht
Demis Hassabis
Ingmar Kanitschneider
Jörg Lücke
Stefan Mihalas
Christos Papadimitriou
Il Memming Park
Jonathan Pillow
Cristina Savin
David Sussillo
Terry Sejnowski
Srini Turaga
Max Welling
























Brains and Bits: Neuroscience Meets Machine Learning
9 & 10 December 2016, Barcelona, Spain
Workshop Overview (link to proposal and summary)

Workshop Schedule and Posters

Time Day 1
8:30 Opening remarks and welcome: Allie Fletcher & Eva Dyer
Normative Models of Neural Computation
8:45 Christos Papadimitriou   A Computer Scientist Thinks About the Brain*     *keynote
9:30 Cristina Savin  
10:00 Sophie Deneve  
10:30 Coffee Break 1a (+ Posters)
Statistical Models for Neural Data Analysis
11:00 Jonathan Pillow  
11:30 Emily Fox   Functional Connectivity in MEG via Graphical Models of Time Series
12:00 Srini Turaga  
12:30-14:00 Lunch + Posters
Analyzing Neural Population Dynamics
14:00 Il Memming Park   Dynamical Systems Interpretation of Neural Trajectories
14:30 David Sussillo   LFADS - Latent Factor Analysis via Dynamical Systems
15:00 Coffee Break1b (+ Posters)
15:30 Poster Session 1
Biological Networks
16:00 Mitya Chklovskii   Toward Biologically Plausible Machine Learning: A Similarity Matching Approach
16:30 Michael Buice  
17:00 Stefan Mihalas   Modeling Optimal Context Integration in Cortical Columns
17:30 Breakout Discussion   Konrad Kording and Eva Dyer
Time Day 2
8:30 Opening remarks Day 2: Jascha Sohl-Dickstein & Eva Dyer
Deep Learning and the Brain
8:45 Yoshua Bengio   Toward Biologically Plausible Deep Learning*     *keynote
9:30 Surya Ganguli   Deep Neural Models of the Retinal Response to Natural Stimuli
10:00 Max Welling   Making Deep Learning Efficient Through Sparsification
10:30 Coffee Break + Posters
11:00 David Cox   Predictive Coding for Unsupervised Feature Learning
11:30-12:30 Panel: From Brains to Bits and Back Again
Panelists: Yoshua Bengio, Demis Hassabis, Terry Sejnowski, Christos Papadimitriou, Sophie Deneve, & Jakob Macke
Moderators: Konrad & Allie
12:30-14:00 Lunch Break + Posters 
Analysis of Neuroimages
14:00 Fred Hamprecht   Motif Discovery in Functional Brain Data
14:30 Anima Anandkumar   TBA
15:00 Coffee Break2b (+ Posters)
15:30 Poster Session 2
Normative Models of Neural Computation II
16:00 Ingmar Kanitschneider   Training Recurrent Networks to Generate Hypotheses About How the Brain Solves Hard Navigation Problems
16:30 Jörg Lücke   Probabilistic Inference and the Brain: Towards General, Scalable, and Deep Approximations
17:00 Wrap up

Organizers

  • Eva Dyer  Northwestern University
  • Allie Fletcher  Statistics, UCLA & UCB Redwood Center for Neuroscience
  • Konrad Kording  Rehabilitation Inst of Chicago, Northwestern University
  • Jascha Sohl-Dickstein  Google Research
  • Joshua Vogelstein  Biomedical Engineering, Johns Hopkins University
  • Jakob Macke caesar Bonn, an Institute of the Max Planck Society

Contributed Talks

  • Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems
    Ingmar Kanitscheider*, Ila Fiete, University of Texas at Austin
  • LFADS - Latent Factor Analysis via Dynamical Systems
    David Sussillo*, Google Brain

Accepted Posters

  • Circuits in the retina: Deep learning as a biological modeling tool
    Dawna Bagherian*, Taehwan Kim, Yisong Yue, Markus Meister
  • Multilayer recurrent network models of primate retinal ganglion cells
    Eleanor Batty*, Nora Brackbill, Josh Merel, Alexander Heitman, Alexander Sher, Alan Litke, E.J. Chichilnisky, Liam Paninski
  • Estimating Mutual Information from Average Classification Error
    Yuval Benjamini*, Charles Zheng
  • Efficient Randomized Filtering for Dimensionality Reduction in Electrophysiology Data
    Nicholas Bertrand*, Han Lun Yap, Adam Charles, Christopher Rozell
  • Modelling human probabilistic categorization with neural reinforcement learning
    Sander Bosch*, Katja Seeliger, Marcel van Gerven
  • Short-term Sequence Memory in Recurrent Networks
    Adam Charles*, Han Lun Yap, Dong Yin, Christopher Rozell
  • Unsupervised learning of manifold models for neural coding of physical transformations in the ventral visual pathway
    Marissa Connor*, Christopher Rozell
  • Multi-view techniques for the joint electrophysiological and morphological classification of neuronal cell types
    Ellese Cotterill*, Stephen Eglen
  • Predicting the consequence of action in digital control state spaces
    Emmanuel Daucé*
  • Computational Geometry for Population Density Techniques: a Bridge Between Individual Neurons and Imaging Techniques?
    Marc De Kamps*, Yi Ming Lai
  • Efficient inference for temporal dependencies and low-rank structure in spatiotemporal receptive fields
    Lea Duncker*, Sneha Ravi, Greg Field, Jonathan Pillow
  • Interplay between off-line replay and plasticity in memory consolidation
    Nathalie Dupuy*, Mark van Rossum
  • Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks
    Felix Effenberger*, Christopher Hillar
  • Neural Simpletrons – Minimalistic Directed Generative Networks for Learning with Few Labels
    Dennis Forster*, Abdul-Saboor Sheikh, Joerg Luecke
  • Analysis of Motor Imagery Signals by Recurrent Neural Network
    Hiroyasu Fukutomi, Takeshi Higuchi, Hideo Mukai*
  • Modern machine learning tools for neural decoding of movement
    Joshua Glaser*, Konrad Kording
  • Large-Scale Noisy-OR Networks as Models for Inference and Learning in Neurosensory Systems
    Enrico Guiraud*, Joerg Bornschein, Joerg Luecke
  • A forward model at Purkinje cell synapses facilitates cerebellar anticipatory control
    Ivan Herreros-Alonso*, Xerxes Arsiwalla, Paul Verschure
  • Automatic cell identification in hard X-ray tomograms of human brain tissue
    Simone Hieber*
  • Implementation of Faster P300 EEG Spelling System by Online Learning
    Takeshi Higuchi, Hiroyasu Fukutomi, Hideo Mukai*
  • Recurrent Neural Networks for Spatiotemporal Dynamics of Intrinsic Networks from fMRI Data
    Devon Hjelm*, Vince Calhoun-Jr, Sergey Plis
  • Neuromodulator-based learning in biological and artificial neural networks
    Raphael Holca-Lamarre*, Klaus Obermayer, Joerg Luecke
  • Ensembles in medial and lateral orbitofrontal cortex construct cognitive maps emphasizing different features of the behavioral landscape
    Nina Lopatina*, Brian Sadacca, Geoffrey Schoenbaum, Michael McDannald
  • Predictive Coding Inspired Networks for Unsupervised Learning and Next Frame Prediction
    William Lotter*
  • Anticipatory actions: anticipated motor commands or reactions to sensory predictions?
    Giovanni Maffei*, Ivan Herreros, Marti Sanchez-Fibla, Paul Verschure
  • Learning from the interaction: Closed-loop optimization of neural modulation using interactive machine learning
    Babak Mahmoudi*
  • Adapting magnetic interactions: from data storage towards hardware that learns
    Johan Mentink*, Bert Kappen, Misha Katsnelson, Alex Khajetoorians, Theo Rasing
  • Temporal Information Demultiplexing: A Novel Approach to the Analysis of Multiplexed Neural Codes
    Manuel Molano Mazon*, Arno Onken, Houman Safaai, Stefano Panzeri
  • Deep Learning Captures V2 Selectivity for Natural Textures
    Md Nasir Uddin Laskar, Luis G Sanchez Giraldo, Odelia Schwartz*
  • Using EEG Covariance Matrices and Riemannian Geometry for Detecting Respiratory Discomfort in Humans
    Xavier Navarro-Sune*, Anna Hudson, Fabrizio De Vico Fallani, Jacques Martinerie, Adrien Witon, Pierre Pouget, Mathieu Raux, Thomas Similowski, Mario Chavez
  • The effect of noise correlations on information coding by neuronal ensembles during perceptual decision-making
    Ramon Nogueira*
  • An olfactory system model finds sparse solutions to the linear inverse problem using the L2 norm
    Gonzalo Otazu*, Paul Masset, Dinu Albeanu
  • Bio-inspired unsupervised pre-training of convolutional neural networks for image classification
    Geoffrey Portelli*, Mélanie Ducoffe, Frédéric Lavigne, Frédéric Precioso
  • Generalization bound for kernel similarity learning
    Michael Rabadi*
  • Inter-layer relationship between CNNs and the human brain
    Kandan Ramakrishnan, Rajat Mani Thomas*
  • Understanding biological computation through synthetic neurophysiology
    Pavan Ramkumar*, Hugo Fernandes, Matthew Smith, Konrad Kording
  • A rich source of labels for deep network models of the primate dorsal visual stream
    Omid Rezai*, Pinar Boyraz Jentsch, Bryan Tripp
  • Recurrent computations for pattern completion
    Martin Schrimpf*
  • Decoding and encoding retinal ganglion cell responses with deep neural networks
    David Schwab*, Stephanie Palmer, Thierry Mora, Olivier Marre
  • Reward-based training of recurrent neural networks for cognitive and value-based tasks
    Francis Song*, Guangyu Robert Yang, Xiao-Jing Wang
  • Towards Local Learning and MCMC Inference in Biologically Plausible Deep Generative Networks
    Jost Tobias Springenberg*, Katharina Wilmes, Joschka Boedecker
  • Combining Multiscale Diffusion Kernels for Learning the Structural and Functional Brain Connectivity
    Sriniwas Surampudi*, Shruti Naik, Avinash Sharma, Bapi Raju Surampudi, Dipanjan Roy
  • Towards end-to-end optimisation of functional image analysis pipelines
    Albert Vilamala*, Kristoffer Hougaard Madsen, Lars Kai Hansen
  • Unsupervised Learning of Spatio-Temporal Features from Retinal Neuronal Signals
    Riccardo Volpi*
  • Canonical Polyadic Tensor Decomposition Identifies Inputs to Artificial Networks
    Alex Williams*
  • Deep Learning in Multi-Layer Architectures of Dense Nuclei
    Yonghua Yin*, Erol Gelenbe
  • CaMKII activation supports reward-based neural network optimization through Hamiltonian sampling
    Zhaofei Yu, David Kappel*, Robert Legenstein, Sen Song, Feng Chen, Wolfgang Maass
  • A Searchlight Factor Model Approach for Locating Shared Information in Multi-Subject fMRI Analysis
    Hejia Zhang*, Po-Hsuan (Cameron) Chen, Janice Chen, Xia Zhu, Javier Turek, Ted Willke, Uri Hasson, Peter Ramadge
  • Predicting psychotic symptoms in 22q11.2 deletion syndrome based on resting-state BOLD variability features extracted by PLS correlation.
    Daniela Zöller*, Marie Schaer, Elisa Scariati, Maria Carmela Padula, Stephan Eliez, Dimitri Van De Ville
  • help on how to format text