Stefan Mihalas
Modeling Optimal Context Integration in Cortical Columns
17:30
Breakout Discussion
Konrad Kording and Eva Dyer
Time
Day 2
8:30
Opening remarks Day 2: Jascha Sohl-Dickstein & Eva Dyer
Deep Learning and the Brain
8:45
Yoshua Bengio
Toward Biologically Plausible Deep Learning* *keynote
9:30
Surya Ganguli
Deep Neural Models of the Retinal Response to Natural Stimuli
10:00
Max Welling
Making Deep Learning Efficient Through Sparsification
10:30
Coffee Break + Posters
11:00
David Cox
Predictive Coding for Unsupervised Feature Learning
11:30-12:30
Panel: From Brains to Bits and Back Again
Panelists: Yoshua Bengio, Demis Hassabis, Terry Sejnowski,
Christos Papadimitriou, Sophie Deneve, & Jakob Macke
Moderators: Konrad & Allie
12:30-14:00
Lunch Break + Posters
Analysis of Neuroimages
14:00
Fred Hamprecht
Motif Discovery in Functional Brain Data
14:30
Anima Anandkumar
TBA
15:00
Coffee Break2b (+ Posters)
15:30
Poster Session 2
Normative Models of Neural Computation II
16:00
Ingmar Kanitschneider
Training Recurrent Networks to Generate Hypotheses About How the Brain Solves Hard Navigation Problems
16:30
Jörg Lücke
Probabilistic Inference and the Brain: Towards General, Scalable, and Deep Approximations
Circuits in the retina: Deep learning as a biological modeling tool
Dawna Bagherian*, Taehwan Kim, Yisong Yue, Markus Meister
Multilayer recurrent network models of primate retinal ganglion cells
Eleanor Batty*, Nora Brackbill, Josh Merel, Alexander Heitman, Alexander Sher, Alan Litke, E.J. Chichilnisky, Liam Paninski
Estimating Mutual Information from Average Classification Error
Yuval Benjamini*, Charles Zheng
Efficient Randomized Filtering for Dimensionality Reduction in Electrophysiology Data
Nicholas Bertrand*, Han Lun Yap, Adam Charles, Christopher Rozell
Modelling human probabilistic categorization with neural reinforcement learning
Sander Bosch*, Katja Seeliger, Marcel van Gerven
Short-term Sequence Memory in Recurrent Networks
Adam Charles*, Han Lun Yap, Dong Yin, Christopher Rozell
Unsupervised learning of manifold models for neural coding of physical transformations in the ventral visual pathway
Marissa Connor*, Christopher Rozell
Multi-view techniques for the joint electrophysiological and morphological classification of neuronal cell types
Ellese Cotterill*, Stephen Eglen
Predicting the consequence of action in digital control state spaces
Emmanuel Daucé*
Computational Geometry for Population Density Techniques: a Bridge Between Individual Neurons and Imaging Techniques?
Marc De Kamps*, Yi Ming Lai
Efficient inference for temporal dependencies and low-rank structure in spatiotemporal receptive fields
Lea Duncker*, Sneha Ravi, Greg Field, Jonathan Pillow
Interplay between off-line replay and plasticity in memory consolidation
Nathalie Dupuy*, Mark van Rossum
Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks
Felix Effenberger*, Christopher Hillar
Neural Simpletrons – Minimalistic Directed Generative Networks for Learning with Few Labels
Dennis Forster*, Abdul-Saboor Sheikh, Joerg Luecke
Analysis of Motor Imagery Signals by Recurrent Neural Network
Hiroyasu Fukutomi, Takeshi Higuchi, Hideo Mukai*
Modern machine learning tools for neural decoding of movement
Joshua Glaser*, Konrad Kording
Large-Scale Noisy-OR Networks as Models for Inference and Learning in Neurosensory Systems
Enrico Guiraud*, Joerg Bornschein, Joerg Luecke
A forward model at Purkinje cell synapses facilitates cerebellar anticipatory control
Ivan Herreros-Alonso*, Xerxes Arsiwalla, Paul Verschure
Automatic cell identification in hard X-ray tomograms of human brain tissue
Simone Hieber*
Implementation of Faster P300 EEG Spelling System by Online Learning
Takeshi Higuchi, Hiroyasu Fukutomi, Hideo Mukai*
Recurrent Neural Networks for Spatiotemporal Dynamics of Intrinsic Networks from fMRI Data
Devon Hjelm*, Vince Calhoun-Jr, Sergey Plis
Neuromodulator-based learning in biological and artificial neural networks
Raphael Holca-Lamarre*, Klaus Obermayer, Joerg Luecke
Ensembles in medial and lateral orbitofrontal cortex construct cognitive maps emphasizing different features of the behavioral landscape
Nina Lopatina*, Brian Sadacca, Geoffrey Schoenbaum, Michael McDannald
Predictive Coding Inspired Networks for Unsupervised Learning and Next Frame Prediction
William Lotter*
Anticipatory actions: anticipated motor commands or reactions to sensory predictions?
Giovanni Maffei*, Ivan Herreros, Marti Sanchez-Fibla, Paul Verschure
Learning from the interaction: Closed-loop optimization of neural modulation using interactive machine learning
Babak Mahmoudi*
Adapting magnetic interactions: from data storage towards hardware that learns
Johan Mentink*, Bert Kappen, Misha Katsnelson, Alex Khajetoorians, Theo Rasing
Temporal Information Demultiplexing: A Novel Approach to the Analysis of Multiplexed Neural Codes
Manuel Molano Mazon*, Arno Onken, Houman Safaai, Stefano Panzeri
Deep Learning Captures V2 Selectivity for Natural Textures
Md Nasir Uddin Laskar, Luis G Sanchez Giraldo, Odelia Schwartz*
Using EEG Covariance Matrices and Riemannian Geometry for Detecting Respiratory Discomfort in Humans
Xavier Navarro-Sune*, Anna Hudson, Fabrizio De Vico Fallani, Jacques Martinerie, Adrien Witon, Pierre Pouget, Mathieu Raux, Thomas Similowski, Mario Chavez
The effect of noise correlations on information coding by neuronal ensembles during perceptual decision-making
Ramon Nogueira*
An olfactory system model finds sparse solutions to the linear inverse problem using the L2 norm
Gonzalo Otazu*, Paul Masset, Dinu Albeanu
Bio-inspired unsupervised pre-training of convolutional neural networks for image classification
Brains and Bits: Neuroscience Meets Machine Learning
9 & 10 December 2016, Barcelona, Spain
Workshop Overview (link to proposal and summary)
Workshop Schedule and Posters
Panelists: Yoshua Bengio, Demis Hassabis, Terry Sejnowski, Christos Papadimitriou, Sophie Deneve, & Jakob Macke
Moderators: Konrad & Allie
Organizers
Contributed Talks
Accepted Posters